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Introduction

Since its genesis in the early 1980s, the subject of quantum groups has
grown very rapidly. Although much of the groundwork was laid by V.
G. Drinfeld in his remarkable talk at the 1986 International Congress of
Mathematicians in Berkeley, a number of basic issues in the theory were
not resolved until later. In addition, important new developments occurred
in the late 1980s and early 1990s, such as the crystal and canonical bases,
and the applications of quantum groups in low-dimensional topology. By
the late 1990s, however, the theory had reached a stage in which most
of the foundational issues had been resolved, and many of the outstanding
problems clearly formulated. It was felt that this was an opportune moment
to hold a nieeting of experts representing all the main strands of the theory,
to take stock of what had been achieved so far and to discuss the most
fruitful directions for future research. The result was the LMS Durhamn
Symposiunm on Quantum Groups, which was held at Grey College in the
University of Durham from 19 July to 29 July, 1999, and organised by S.
Doukin, A. Pressley aund A. Sudbery. The preseut voluine is a record of
some of the lectures given at the Symposium.

Two lecture series are represented here which forn1 excellent surveys of two
important areas. Ariki’s ‘Lectures on Cyclotomnic Hecke Algebras’ describe
his remarkable realisation of the canonical basis in terins of a Fock space
that arises in the study of solvable lattice models in statistical mechan-
ics. Also closely connected with Physics are Etinghof’s ‘Lectures on the
dynamical Yang-Baxter equation’. The Yang-Baxter equation has played a
central role in the theory of quantumn groups from the beginning. and its
dynamical version is a generalization which, like the ordinary Yang-Baxter
equation, first appeared in the Physics literature, but has since found many
applications, particularly to integrable systemns and representation theory.
The remaining articles relate to single lectures given at the Symposium, and
they cover a wide variety of topics within quantuin groups. Several treat the
problem of constructing and classifying quantuin groups or the associated
solutions of the quantuin Yang-Baxter equation, including those by Ding &
Hodges, Musson and Parashar & McDermott. The papers of Drabant and
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Wenzl deal with the tensor categories of representations of quantuin groups.
Those of Chari & Pressly and Gordon treat the representation theory di-
rectly, the first for infinite-dimmensional quantum groups and generic g, the
latter for finite-dimensional quantum groups and but g a root of unity. The
paper of Carter & Marsh gives a new, and partly conjectural, parametri-
sation of the canonical basis. The papers of Goodearl and Majid take the
function algebra approach to quantuin groups, from the point of view of al-
gebraic geometry and differential geometry, respectively. And Beggs’ paper
describes soine new ideas which relate to the origins of quantum groups in
the theory of integrable systeins.

We hope that this volume provides a picture of the state of the theory of
quantuin groups towards the end of the second millenium and that it also
indicates some directions in which the theory can be expected to develop in
the next.



Lectures on Cyclotomic Hecke Algebras

Susumu Ariki

1 Introduction

The purpose of these lectures is to introduce the audience to the theory of
cyclotomic Hecke algebras of type G(m,1,n). These algebras were introduced
by the author and Koike, Broué and Malle independently. As is well known,
group rings of Weyl groups allow certain deformation. It is true for Coxeter
groups, which are generalization of Weyl groups. These algebras are now
known as (Iwahori) Hecke algebras.

Less studied is its generalization to complex reflection groups. As I will
explain later, this generalization is not artificial. The deformation of the
group ring of the complex reflection group of type G(m,1,n) is particularly
successful. The theory uses many aspects of very niodern development of
mathematics: Lusztig and Ginzburg’s geometric treatment of affine Hecke
algebras, Lusztig’s theory of canonical bases, Kashiwara’s theory of global
and crystal bases, and the theory of Fock spaces which arises from the study
of solvable lattice models in Kyoto school.

This language of Fock spaces is crucial in the theory of cyclotomic Hecke
algebras. I would like to mention a little bit of history about Fock spaces in
the context of representation theoretic study of solvable lattice models. For
level one Fock spaces, it has origin in Hayashi’s work. The Fock space we
use is due to Misra and Miwa. For higher level Fock spaces, they appeared
in work of Jimbo, Misra, Miwa and Okado, and Takemura and Uglov. We
also note that Varagnolo and Vasserot’s version of level one Fock spaces have
straight generalization to higher levels and coincide with the Takemura and
Uglov’s one. The Fock spaces we use are different from them. But they are
essential in the proofs.

Since the cyclotomic Hecke algebras contain the Hecke algebras of type A
and type B as special cases, the theory of cyclotomic Hecke algebrss is also
useful to study the modular representation theory of finite classical groups of
Lie type.

I shall explain theory of Dipper and James, and its relation to our theory.
The relevant Hecke algebras are Hecke algebras of type A. In this case, we
have an alternative approach depending on the Lusztig’s conjecture on quan-
tum groups, by virtue of Du’s refinement of Jimbo’s Schur-Weyl reciprocity.
Even for this rather well studied case, our viewpoint gives a new insight. This
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viewpoint first appeared in work of Lascoux, Leclerc and Thibon. This Fock
space description looks quite different from the Kazhdan-Lusztig combina-
torics, since it hides affine Kazhdan-Lusztig polynomials behind the scene.
Inspired by this description, Goodman and Wenzl have found a faster algo-
rithm to compute these polynomials. Leclerc and Thibon are key players in
the study of this type A case. I also would like to mention Schiffman and
Vasserot’s work here, since it makes the relation of canonical bases between
modified quantum algebras and quantized Schur algebras very clear.

I will refer to work of Geck, Hiss, and Malle a little if time allows, since
we can expect future development in this direction. It is relevant to Hecke
algebras of type B. Finally, I will end the lectures with Broué’s famous dream.

Detailed references can be found at the end of these lectures. The first
three are for overview, and the rest are selected references for the lectures.
[i-] implies a reference for the 7 th lecture.

2 Lecture One

2.1 Definitions

Let k be a field (or an integral domain in general). We define cyclotomic
Hecke algebras of type G(m,1,n) as follows.

Definition 2.1 Let vy,...,vnm,q be elements in k, and assume that q is in-
vertible. The Hecke algebra H,(vy,...,vm;q) of type G(m,1,n) is the k-
algebra defined by the following relations for generators a; (1<i<n). We
often write H,, instead of H,(v1,-..,Um: q). If we want to make the dase ring
explicit, we write H,/k.

{ar—v)-(ag —vm) =0, (ai—g)ai+1)=0 (i>2)
01820103 = 03010501, ae; = aja; (j>i+2)
Gi0;10; = 6;_10:0,_) (3<i<n)

The elements L; = ¢' a,a;_1---asaja3---a; (1 < i < n) are called (Jucy-)
Murphy elements or Hoefsmit elements.

91 wou.d like to thank all the rescarchers involved in the development. Good interaction
with German modular representation group (Geck, Hiss, Malle; Dipper), British combi-
natorial modular representation group (James, Mathas, Murphy), French combinatorics
group (Lasconx, Leclere, Thibon), modular represertation group iBroué, Rouquier; Vign-
cras), geometric representation group {Varagnolo, Vasserot, Schiffman) and Kyoto solvable
lattice medel group (Okado, Takemura, Uglov) has nourished the rapid development. We
still have some problems to solve, and weleome young people who look for problems.

I also thank KKashiwara, Lusztig, Ginzburg for their theories which we use.
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Remark 2.2 Let H, be the (extended) affine Hecke algebra associated with
the general linear group over a non-archimedian field. For each choice of
positive oot system, we have Bernstein presentation of this algebra. Let
P = Ze, + -+ + Ze, be the weight lattice as usual. We adopt ”geometric
choice” for the positive Toot system. Namely {a; = €41 — €;} are simple
roots. Let S be the associated set of Coxeter generators (simple reflections).
Then H, has description via generators X. (€ € P) and T (s € S). We omit
the description since it is well known. The following mapping gives rise a
surjective algebra homomorphism from H, to H,.

Xe = Ly, Ti,, = in

This fact is the reason why we can apply Lusztig’s theory to the study of
cyclotomic Hecke algebras. Since the module theory for H,, has been developed
by different methods. it has also enriched the theory of affine Hecke algebras.

Remark 2.3 Let (,, be a primitive m th rcot of unity. If we specialize g =
L,v; = (&', we have the group ring of G(m,1,n). G(m,1,n) is the group
of n X n permutation matrices whose non zero enlries are allowed to be m
th roots of unity. Under this specialization, L; corresponds to the diagonal
malriz whose i th diagonal entry is (,, and whose remaining diagonal entries
are 1. We would like to stress two major differences between the group algebra
and the deformed algebra H,,.

(1) (Li = v1)--- (Li — vm) is not necessarily zero fori > 1.

(2) If we consider the subalgebra generated by Murphy elements, its dimen-
ston is not m"™ in general. Further, the dimension depends on parameters

U1, Ums 4-

Nevertheless, we have the following Lemma. a,, is defined by a;, -+ - a;, for
a reduced word s;, -+ s; of w. It is known that a,, does not depeni on the
choice of the reduced word.

Lemma 2.4 {L{'--- L&a,|0 < e; < m,w € &,} form a basis of H,.

(How to prove) We consider H,, over an integral domain R, and show that
STRL}'---Ltta, is a two sided ideal. Then we have that these elements
generate H,, as an R-module. To show that they are linearly independent, it
is enough to take R = Z[q,q7},vy,...,Vn). In this generic parameter case,
we embed the algebra into H,/Q(q,Vi,...,Vm). Then we can construct
enough simple modules to evaluate the dimension.

An important property of H,, is the following.

Theorem 2.5 (Malle-Mathas) Assume that v; are all invertible. Then M,
is a symmetric algebra.



4 Susumu Ariki

(How to prove) Since H,, is deformation of the group algebra of G(m, 1,n),
we can define a lengrh function {(w) and a,, for a reduced word of w. Unlike
the Coxeter group case, a,, does depend on the choice of the reduced word.
Nevertheless, the trace function

_[0 w#1)
t'r(a.,,)—{1 (w=1)

is well defined. (u,v) := tr(uv) (u,v € H,,) gives the bilinear form with the
desired properties. B

Remark 2.6 We have defined deformation algebras for (not all but most of )
other types of irreducible complex reflection groups by generators end rela-
tions. (G(m,p,n): the author, other exceptional groups: Broué and Malle.)
The most natural definition of cyclotomic Hecke algebras is given by Broué,
Malle and Rouquir. It coincides with the previous definition in most cases.

Let A be the hyperplane arrangement defined by complex reflections of
W. For each C € A/W, we can associate the order e¢ of the cyclic group
which fix a hyperplane in C. Primitive idempotents of this cyclic group are
denoted by ¢;(H) (0< j < e¢). We set M =C"\UyeH.

Definition 2.7 For each hyperplane H, let ay be the linear form whose ker-
nel is H. It is defined up to scalar multiple. We fix a set of complex numbers
tcj- Then the following partial differential equation for CW -valued functions
F on M is called the (generalized) KZ equation.

oF |
or = T L 2 et ()P

CeAyW j=0 HeC

Theorem 2.8 (Brcué-Malle-Rouquier) Assume that parameters are suf-
ficiently generic. Let B be the braid group attached to A. Then the mon-
odromy representation of B with respect to the above KZ equation factors
through a deformation ring of CW. If W = G(m,1,n) for example, it coin-
cides with the cyclotomic Hecke algebra with specialized parameters.

2.2 Representations

If all modules are projective modules, we say that H,, is a semi-simple algebra,
and call these representations ordinary representations. We have

Proposition 2.9 (Ariki(-Koike)) H,, is semi-simple if and only if g'v;— v,
(5] < n,j # k) and1+g+--+¢" (1 £i < n) are all non zero. In
this case, simple modules are parametrized by m-tuples of Young diagrams of
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total size n. For each X = (A\™ .. X1}, the corresponding simple module
can be realized on the space whose basis elements are indexed by standard
tableaur of shape \. The basis elements are simultaneous eigenvectors of
Murphy elements, and we have explicit matriz represeniation for generators
a; (1 S 1 S n).

These represenations are called semi-normal form representations.
Hence we have complete understanding of ordinary representations. If H,, is
not seni-simple, representations are called modular representations. A
basic tool to get information for modular representations from ordinary ones
is "reduction” procedure.

Definition 2.10 Let (K, R, k) be a modular system. Namely, R is a discrete
valuation ring, K is the field of fractions, and k is the residue field For an
H,n/K-module V, we take an H,/R-lattice Vg and set V = Vg ® k. It is
known that V does depend on the choice of Vg, but the composition factors
do not depend on the choice of Vg. The map between Grothendieck groups of
finite dimentional modules given by

decg i : Ko(mod—H,/K) — Ko(mod—H,/k)

which sends [V] to [V] is called @ decomposition map. Since Grothendieck
groups have natural basis given by simple modules, we have the matriz repre-
sentation of the decomposition map with respect to these bases. It is called the
decomposition matrix. The entries are celled decomposition numbers.

In the second lecture, we also consider the deconiposition map between
Grothendieck groups of K G L(n,q)—mod and kGL(n, g)-mod.

Remark 2.11 Decomposition maps are not necessarily surjective even after
coefficients are extended to complex numbers. If we take m = 1,2 and g € k
to be zero, we have counter examples. These are called zero Hecke algebras,
and studied by Carter. Note that we exclude the case ¢ = 0 in the
definiticn. In the case of group algebras, the theory of Brauer characters
ensures that decomposition maps are surjective.

In the case of cyclotomic Hecke algebras. we have the following result.

Theorem 2.12 (Graham-Lehrer) H,, is a cellular algebra. In perticular,
the decomposition maps are surjective.

The notion of cellularity is introduced by Graham and Lehrer. It has sonie
resemblance to the definition of quasi hereditary algebras. This is further
pursued by Koénig and Changchang Xi.

In this lecture, we follow Dipper, James and Mathas’ construction of
Specht modules. We first fix notation.



6 Susumu Ariki

Let A = (A, M), = (u™ ... ,uM) be two m-tuples of Young
diagrams. We say A doniinates g and write A B 0 if

]
IICES SIVES SIS ot
=1

t
>k >k i=1

for all k,l. This partial order is called dominance order.

For each A = (A™, ..., AM), we set ap = n— [AD| — ... — |A®).
Wehaven >a; > --- > a; >0 and a, = 0 for k > [ for some l. we denote [
by I(a). For a = (ay), we denote by &, the set of permutzations which preserve
{1,....a&},.... {axr+1,....a64},... {as + 1,...,n}. We also set

o= (Li—v1)-(Lay = v1) X (Lt = v3) - (Lay — v3) X -+~
v X (L = viay) -+ (Liga) — Via))

Let t* be the cznonical tableau. It is the standard tableau on which
1,...,n are filled in by the following rule:
1,..., 2™ are written in the first row of X™; A{™ + 1, A™ 4 A6 are

in the first row of A1) and sc on.
The row stabilizer of t* is denoted by &;. We set

Iy= E Gy, My = THUg = UgT ).
weES,

Let t be a standard tableau of shape A. If the location of i, € {1,...,n}
in t is the same as the location of k in t*, We define d(t) € G, by k — i,
(1<k<n).

Definition 2.13 Let » : H,, — H, be the anti-involution induced by o} = a;.
For each pair (s,t) of standard tableaux of shape X, we set my = a;(s-,m)\adu).

Remark 2.14 {m} form a cellular basis of H,.

Proposition 2.15 (Dipper-James-Mathas) Let (K,R,k) be a modular
system. We set Iy = > Rm,, where sum is over pairs of standard tableauz

of shape strictly greater than X\ {with respect to the dominance order). Then
Z, is a two sided ideal of H,/R.

(How to prove) It is enough to consider straightening laws for elements a;m,,
and mga;. We can then show that m,, appearing in the expression have
greater shapes with respect to the dominance order. B

Definition 2.16 Set zy, = my mod Zy. Then the submodule S* = z,H, of
H./Zy is called a Specht module.
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Theorem 2.17 (Dipper-James-Mathas)
{2xa40)| t : standard of shape \} form a basis of S,

(How to prove) We can show by induction on the dominance order that these
generate S*. Hence the collection of all these generate H,,. Thus counting
argunment completes the proof. B

Definition 2.18 S* is equipped with a bilinear form defined by
(228d(t), 228d(s))MA = MAG ()8 miOd T,

Theorem 2.19 (General theory of Specht modules)
(1) D* = S*/rad( , ) is absolutely irreducible or zero module. {D* # 0}
form a complete set of simple H,,- modules.

(2) Assume D* # 0 and [S* : D¥| # 0. Then we have p < \.

Remark 2.20 In the third lecture, we give a criterion for non vanishing of
D>,

Theorem 2.21 (Dipper-Mathas) Let {vy,...,v,} =U%LS; be the decom-
position such that v;, v are in a same S; if and only if v; = vig® for some
b € Z. Then we have

mod-H,, ~ @ mod—H,, 8 --- B mod—H,,

where H, = Ho(v1,...,Vm;q), Hn, = Hp,(Si1q), and the sum runs through
ny+---+n, =n.

Hence, it is enough to consider the case that v; are powers of g.

Remark 2.22 For ihe classification of simpie modules, we can use arguments
of Rogawski and Vigneras for the reduction to the case that v; are powers of
q. Hence we do not need the abeve theorem for this purpose.

2.3 First application

Let k' = k™ /(g). We assume that ¢ # 1, and denote the multiplicative order
of g by r. A segment is a finite sequence of consecutive residue numbers
which take values in Z/rZ. A multisegment is a collection segments. As-
sume that a multisegment is given. Take a segment in the multisegment. By
adding i ( € Z/rZ) to the entries of the segment simultaneously, we have a
segment of shifted entries. If all of these r segments appear in the given multi-
segment, we say that the given multisegment is periodic. If it never happens
for all segements in the multisegment, we say that the given multisegment is
aperiodic. We denote by MZP the set of aperiodic multisegments.
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Theorem 2.23 (Ariki-Mathas) Simple modules over H,,/k are parametrized
by
MP(k) = {3 k5 = M| Y IN@)] = n}

:ek;

(How to prove) We consider a setting for reduction procedure, and show that
a lower bound and an upper bound for the number of simple modules coincide.
To achieve the lower bound, we use the integral module structure of the direct
sum of Grothendieck groups of projH,, with respect to a Kac-Moody algebra
action, which will be explained in the second lecture. The upper bound is
achieved by cellularity. B

Remark 2.24 The lower bound can be achieved by a different method. This
s due to Vigneras.

Let F be a nonarchimedian local field and assume that the residue field
has characteristic different from the characteristic of k. We assume that k is
algebraically closed. We consider admissible k-representations of GL(n, F).
We take modular system (K, R.k) and consider reduction procedure.

Theorem 2.25 (Vigneras) All cuspidal representatiors are obtained by re-
duction procedure. The admissible dual of k-representations is obtained from
the classification of simple H,/k-modules.

Hence we have contribution to the last step of the classification.

Remark 2.26 Her method is induction from open compact groups and theory
of minimal K-types. In the characteristic zero case, it is done by Bushnell
and Kutzko. Considering M := indg i (o) where (K, o) is irreducible cuspidal
distinguished K-type, she shows that EndyeiM) is isomorphic to product of
affine Hecke algebras, and M satisfies the following hypothesis.

"There exists a finitely generated projective module P and a surjective
homomorphism 3 : P — M such that Ker(f) is Endyg(P)-stable.”

Then the classification of simple kG-medules reduces to that of simple
Endie(M)-modules. This simple fact is known as Dipper’s lemma.

3 Lecture Two

3.1 Geometric theory

Let N be the set of n X n nilpotent matrices, F be the set of n-step complete
flags in C". We define the Steinberg variety as follows.

Z = {(N,F1, Fy) € N x F x F|Fy, Fy are N-stable}
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G = GL(n,C) x C* naturally acts on Z vis
(gaq)(Na Fla F2) = (q—lAd(g)Na gFla gF2)

Let K€(Z) be the Grothendieck group of G-equivariant coherent sheaves on
Z. Tt is an Z[q,q']- algebra via convolution product.

Theorem 3.1 (Ginzburg)

(1) We have an algebra isomorphism KS(Z) ~ H,

(2) Let us consider a central character of the cente'r Z[XE, ..., XE]%[q¥]
induced by § : X, — X;. By specializing the center via ihis linear character,
we obtain a specialized affine Hecke algebra. Let s be diag(Ay, ..., \,). Then
H,(Z'59", C) equipped with convolution product is isomorphic to the specialized
affine Hecke algebra. Here the homology groups are Borel-Moore homology
groups, and Z*9 are fized poinis of (s,q) €G.

Remark 3.2 All simple modules are obtained as simple modules of various
specialized affine Hecke algebras.

Theorem 3.3 (Sheaf theoretic interpretation)
Let N be {(N,F) € N x F|F is N-stable}, u : N — N be the first
projection. Then

(1) H(Z%9,C) ~ Ext* (1. Cxrcsars e C ey -

(2) Let 1. Crri.p = Bo Brez Lo(k) ® IC(O,C)[k]. Then Lo := BrezLo(k)
is a simple H.(Z (s9), C)-module or zero module. Further, non-zero ones form
a complete set of simple H,(Z*9, C)-modules. If g is not a root of unity, all
Lo are non-zero. If q is a primitive r th root of unity, Lo # 0 if and only
if O corresponds to a (tuple of) aperiodic multisegments taking residues in

Z/rZ.

In the above theorem, the orbits run through orbits consisting of isomor-
phic representations of a quiver, which is disjoint union of infinite line quivers
or cyclic quivers of length 7. The reason is that A9 is the set of nilpotent
matrices N satisfying sNs~! = ¢N, which can be identified with representa-
tions of a quiver via considering eigenspaces of s as vector spaces on nodes
and N as linear maps on arrows. Thls is the key fact which relates the affine
quantum algebra of type A, AT_l and representations of cyclotomic Hecke
algebras.

Definition 3.4 Let C,, be the full subcategory of mod—H, whose objects are
modules which have central character § with all eigenvalues of s being pow-
ers of q. Let z be an indeterminate and set c,(z) = (z — X¢)---(z —
Xe,- We denote by P, ;) —git)- (z_q.,,)( ) the exact functor taking gener-
alized eigenspaces of eigenvalue (z — ¢*')---(z — ¢') with respect to cu(z2).
We then set

i—Res(M)= P Poi», f(Z)/(z—q)(Resy, | (Pewia) 1 (M) ))

f(z)€kiz]
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This is an exact functor from C, to C,—;. We set U, = Hom¢(Ko(C,),C),
fi=(i— Res)T : Upy = Un.

I shall give some historical comments here. The motivation to introduce
these definitions was Lascoux-Leclerc-Thibon’s observation that Kashiwara’s
global basis on level one modules computes the decomposition numbers of
Hecke algebras of type A over the field of complex numbers. The above
notions for affine Hecke algebras and cyclotomic Hecke algebras were first
introduced by the author in his interpretation of Fock spaces and action of
Chevalley generators in LLT observation into (graded dual of) Grothendieck
groups of these Hecke algebras and i-restriction and i-induction operations.
This is the starting point of a new point of view on the representation theory
of affine Hecke algebras and cyclotomic Hecke algebras. As I will explain
below, it allows us to give a new application of Lusztig’s canonical basis.
It triggered intensive studies of canonical bases on Fock spaces. These are
carried out mostly in Paris and Kyoto. On the other hand, the research on
cyclotomic Hecke algebras are mostly lead by Dipper, James, Mathas, Malle
and the author. In the third lecture, these two will be combined to prove
theorenis on Specht module theory of cyclotomic Hecke algebras.

We now state a key proposition necessary for the proof of the next theo-
ren1. In the top row of the diagram, we allow certain infinite sum in U(g(A4u))
in accordance with infinitc sum in U/,. Notc that we do not have infinitc sum
in the bottom row.

Proposition 3.5 (Ariki) There erists a commutative diagram

U~(9§Aeo)) = @nonUn/q
U™(8(A2)) ~ @nsoUn/e=V1

such that the left vertical arrow is inclusion, the right vertical arrow is induced
by specialization q — q, and the bottom horizontal arrow is an U “(g(/lil_)l))-
modulc isomorphism. Under this isomorphism, canonical basis clements of

U —(g(/lil_)l)) map to dual basis elements of {[simple module]}.

(How to prove) We firstly construct the upper horizontal arrow by using
PBW-type basis and dual basis of {[standard module]} of affine Hecke al-
gebras. Here we use Kazhdan-Lusztig induction theorem. We also use re-
striction rule for Specht modules. We then appeal to folding argunient. On
the left hand side, we consider this folding in geometric terms. Since only
short explanation was supplied in my original paper, I also refer to Varagnolo-
Vasserot’s argument for this part. Note that the Hall algebra of the cyclic
quiver is realized as the vector space whose basis is given by infinite sums of
dual basis elements of {[standard module]}. We then use

[standard module:simple module]=[canonical basis:PBW-type basis]
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which is a consequence of the Ginzburg’s theorem stated above. B

We now turn to the cyclotomic case. In this case, we can consider not only
negative part of Kac-Moody algebra, but the action of the whole Kac-Moody
algebra.

Definition 3.6 Assume that v; =q" (1<i<m) andg= V1. We set

Vn = Hom¢(Ko(mod—H,),Cl, V = @upoVa.

We define c,(z) = (zx— L,)--- (2 — L,,). Then we can define
i—Res(M)= P Fe_ipseye-a (R“u,. \ (P p(M )))
J(z)ekiz]
i—IndM)= P P.,errere-a (1 ndzg** (Peyiay (M ))) :
f(z)€kiz}

These are exact functors and we can define

e;= (i — Ind)T Vo — Vo
fi=(GE—Res)T Vo1 >V,

Definition 3.7 Let F = @CX be a based vector space whose basis elements
are m-tuples of Young diagrams X = (A0™)_. . AQ),

Assume that v; € Z/rZ (1 < i < m) are given. We introduce the notion
of residues of cells as follows: Take a cell in X. If the cell is located on the
(i, 7)th entry of X*¥), we say that the cell has residue —i+j+x € Z/rZ. Once
residues are defined, we can spexk of removable i-nodes and addable i-nodes
on X\: Conver corners of A with residue i are called removable i-nodes.
Concave corners of A with residue i are called addable i-nodes.

We define operators e; and f; by e;x (resp.f;)\) being the sum cf all u’s
obtained from X\ by removing (resp.adding) a removable (resp.addable) i-node.
We can extend this action to make F an integrable g(Ail_)l)- module. (If
r = 00, we consider Ai'jl as Ax.)

We call F the combinatorial Fock space. Note that the action of the
Kac-Moody algebra depends on (1, ..., Ym: 7).

Theorem 3.8 (Ariki) We assume v; =g" (1 <i<m), q= VieC. We
set A=>1 A.. Then we have the following.

(1) L(A) = V = U(g(AD)))0 c F.

(2) Through this isomorphism, canonical basis elements of L(A) are identi-
fied with dual basis elements of simple modules, and the embedding to F is
identified with the tronspose of the decompaosition mop.
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(How to prove) We first consider reduction procedure from semi-simple H,,/ K
to Ha./k. Note that this is not achieved by v; = q* and q to ¢. Then V/K
can be identified with F. We then consider

U= (g(A%)))0
)

R

|4 CcF
1 1
U (g(A™)) =~ @ Unlg=V1

Then the previous proposition and integrality of F prove the theorem. B

Remark 3.9 The theorem says that we have a new application of Lusztig’s
canonicel bases, which is similar to the application of Kazhdan-Lusztig bases
of Hecke algebras to Lie algebras (Kazhdan-Lusztig conjecture) and quantum
algebras (Lusztig conjecture). It is interesting to observe that the roles of
quantum. algebras and Hecke algebras are interchanged: in Lusztig’s conjec-
ture, Kazhdan-Lusztig bases of Hecke algebras describe decomposition numbers
of quantum algebras at roots of unity; in our case, canonical bases of quan-
tum affine algebras on integrable modules describe decomposition numbers of
cyclotomic Hecke algebras at roots of unity. Previously, ¢ positivity result was
the only application of canonical bases.

The fact that affine Kazhdan-Lusztig polynomials appear in geometric con-
struction of quantum algebras and affine Hecke algebras was known to spe-
cialists. What was new for affine Hecke algebras is the above proposition,
particulerly its formulation in terms of Grothendieck groups of affine Hecke
algebras.

For canonical bases on integrable modules, the theorem was entirely new,
since no one knew the ”correct” way of taking quotients of affine Hecke alge-
bras to get the similar Grothendieck group description of canonical bases on
integrable modules. It was just after cyclotomic Hecke algebras were intro-
duced.

Remark 3.10 Let (K, R, k) be 2 modular system. If we take semi-perfect R,
we can wdentify V with ©n>0Ko(proj—H,), the transpose of the decomposition
map with the map induced by lifting idempotents, the dual basis elements
of simple modules with principal indecomposable modules, respectively. Here
proj—H, denotes the category of finite dimentional projective H,-modules.
We often use this description since it is more appealing.

Remark 3.11 If m = 1, namely the Hecke algebra has type A, we have an-
other way to compute decomposition numbers. Let us consider Jimbo's Schur-
Weyl reciprocity. It has refinement by Du, and can be considered with special-
ized parcmeters. Let us denote the dimension of the natural representation by
d, the endomorphism ring End,,,(V®") by Su... This endomorphism ring is
called the g-Schur algebra. Note that Schur functors embed the decompo-
sition numbers of Hecke algebras into those of q-Schur algebras. Then Du’s
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result implies that the decomposition numbers of Hecke algebras are derived
from these of quantum algebras Uy(gly) with ¢ = V1. There is a closed for-
maula for decomposition numbers [Weyl module:simple module] of quantum
algebras at a root of unity: these are values ct 1 of parabolic Kazhdan-Lusztig
polynomials for (ertended) affine Weyl groups of type A. This formula is
known as the Lusztig conjecture for quantum algebras. (This is a theorem
of Kazhdan- Lusztig+ Kashiwara-Tanisaki. There is another approach for this
m = 1 case. This is due to Varagnolo- Vasserot and Schiffman.)

Remark 3.12 The introduction of combinatorial Fock spaces is due to Misra,
Miwa and Hayashi, as I stated in the introduction. We will return to their
work on v-deformed Fock spaces in the third lecture.

3.2 Algorithms

For the case m = 1, we have four algorithms to compute decomposition
numbers. These are LLT algorithm, LT algorithn, Soergel algorithm, and
modified LLT algorithm. For general m, we have Uglov algorithm.

(1) LLT algorithm

This is due to Lascoux, Leclerc and Thibon. It is based on theorem
3.8. Basic idea is to construct "ladder decompostion” of restricted Young
diagrams. Then it produces basis {A(\)} of the level one module L(Ag). (I
will show an example in the lecture. This is a very simple procedure.)

Once {A()\)} is given, we can determine canonical basis elements G())
recursively. We set

G(\) = A0) = Y exn(v)Glw),

HOA

and find ¢,,{(v) by the following condition.

™) = eaulv), G(A) e+ ZvZZv]u

HOA

Note that we follow the convention that restricted partitions form a basis of
L(Ay).

Remark 3.13 By a theorem of Leclerc, we can also compute decomposition
numbers of g-Schur algebras by using those of Hecke algebras.

(2) LT algorithm

This is based on Leclerc-Thibon’s involution and Varagnolo- Vasserot’s
reformulation of Lusztig conjecture. It has an advantage that we directly
compute all decompoition numbers of g-Schur algebras.
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We use fermionic deseription of the Fock space. Then a simple procedure
on basis elenients and straightening laws define bar operation on the Fock
space. We then conipute canonical basis elements by the characterization

GO =G(). GO e+ vZvu

HDOA

(3) Soergel algorithm

It is reformulation of Kazhdan-Lusztig algorithm for parabolic Kazhdan-
Lusztig polynomials. Let A" be the set of alcoves in the positive Weyl cham-
ber. We consider vector space with basis {(4)} 4c4+. For each simple reflec-
tion s, we denote by As the adjacent alcove obtained by the reflection. The
Bruhat order determines partial order on A*. Let C; be the Kazhdan-Lusztig
element corresponding to s (we use (75 —v)(Ts+v~!) = 0 as a defining relation
here). Then the action of C on this space is given by

(As)+v(4A) (Ase€ At As> A)
(A)C;=( (As)+v1(A) (dse A*,As< A)
0 (else)

We determine Kazhdan-Lusztig basis elements G(A) recursively. For 4 €
At we take s such that As <© A. Then we find

G(A) = G(As)Cs— > cap(v)G(B)

B<A

by the condition

cap(vl) =cap(v), G(A)€A)+ z vZ[v](B)
B<A

(4) modified LLT algorithm

This is an algorithm which improves LLT algorithm. The idea is not to
start from the emipty Young diagram. This is due to Goodman and Wenzl.
Their experiment shows that Soergel’s is better than LLT, and modified LLT
is much faster than both.

(5) Uglov algorithm
This is generalization of LT algorithm, and it uses the higher level Fock
space introduced by Takemura and Uglov.

3.3 Second application

Let us return to the ¢-Schur algebra. We summarize the previous explanation
as follows.
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Theorem 3.14 If g # 1 is a root of unity in a field of characteristic zero,
the decomposition numbers of the g-Schur algebra are computable.

Corollary 3.15 (Geck) Let k be a field We consider the g-Schur algebra
over k. If the characteristic of k is sufficiently large, the decomposition num-
bers of the g-Schur algebra over k are computable. Note that we do not exclude
g =1 here.

It has application to the modular representation theory of GL(n,q). Let
g be a power of a prime p, the characteristic of k be [ # p. We assume that k
is algebraically closed. This case is called non-describing characteristic case.
We want to study Ko(kGL(n, g)—mod).

Theorem 3.16 (Dipper-James) Assume that the decomposition numbers
of g*-Schur algebras over k for various a € Z are known. Then the de-
composition numbers of GL(n,q) in non-describing characteristic case are
computable.

We explain how to compute the decomposition numbers of G := GL(n, q).
Let (K, R, k) be an l-modular system. James has constructed Specht modules
for RG. We denote them by {Sg(s,A)}. s is a semi-simple element of G. If
the degree of s over IF, is d, A run through partitions of size n/d.

(1) A complete set of simple K G-modules is given by

(i guse00) 1001

where RG(—) stands for Harish-Chandra induction, d; is the degree of s;,
and {s,...,sx} run through sets of distinct semi-simple elements. We use
Dipper-James’ formula

[Se(s,X) - Dils, )] = dye
where dy,s is a decomposition number of the g?-Schur algebra. Then we
rewrite RS (lSNSh(Si’ )\(i))) into sum of R® (ISNDk(Si’”(i)))'
(2) Let ¢; be the l-regular part of s;, a; be the degree of t;, ¥ be the Young

diagram obtained frem p® by multiplying all columns by d;/a;. Then we have

Di(s:, 1) ~ Dy(t;,v®). This is also due to Dipper and James. Thus we

can rewrite RG( Dy(s5, 1) ) into RG( Dy(t;,v®) ). Assume that
1<igV \1Si<N

t; = t;. Then we use the inverse of the decomposition matrices of ¢*-Schur

algebras of rank d;k; and d;k; to describe Dy (t;, v@)RD,(t;, 1)) as an alter-

nating sum of Si(t;,n®) ® Si(t;,n"). Then the Harish-Chandra induction
of this module is explicitly computable by using Littlewood-Richardson rule.
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We use the decomposition matrix of the ¢%-Schur algebra of rank d;k; + d;k;

to rewrite it again into the sum of R® 1<N'Dk(ti’ n(i))). Continning this
.—1.—

procedure, we reach the case that all ¢; are mutually distinct.

(3) The final result of the previous step already gives the answer since the
following set is a complete set of simple kG-modules.

{RG (1<N,Dk“i’“‘i))) | > ails®| = n}

where {t1, ..., tx+} run through sets of distinct I-regular semi-simple elements.

4 Lecture Three

4.1 Specht modules and v-deformed Fock spaces

We now v-deform the setting we have explained in the second lecture. The
view point which has emerged is that behind the representation theory of
cyclotomic Hecke algebras, there is the sarne crystal structure as integrable
modules over quantum algebras of type A,_l, and this crystal structure is
induced by canonical bases of integrable modules. As a corollary to this
viewpoint, Mathas and the author have parametrized simple H,, modules over
an arbitrary field using crystal graphs. Since the canonical basis is defined in
the v-defornmed setting, It further lead to intensive study of canonical bases
on various v-deformed Fock spaces.

The purpose of the third lecture is to show the compatibility of this crys-
tal structure with Specht module theory. The above mentioned studies on
canonical bases on v-deformed Fock spaces are essential in the proof.

Before going to this main topic, I shall mention related work recently done
in Vazirani’s thesis. This can be understood in the above context. As I have
explained in the second lecture, this viewpoint has origin in Lascoux, Leclerc
and Thibon’s work, which I would like to stress here again.

Theorem 4.1 (Vazirani-Grojnowski) Let é;(M) = soc(i — Res(M)). If
M s irreducible, then &,(M) is irreducible or zero module.

The case m = 1 is included in Kleshchev and Brundan’s modular branch-
ing rule. It is natural to think that the socle series would explain the canonical
basis in the crystal structure. This observation was first noticed by Rouquier
as was explained in 2b], and adopted in this Vazirani’s thesis.

We now start to explain how Specht module theory fits in the description
of higher level Fock spaces.

Let F, = ®C(v)XA be the v-deformed Fock space. It has U,(g(A™)))-
module structure which is deformation of U(g(A‘",))-module structure on
F. To explain it, we introduce notation.



Lectures on Cyclotomic Hecke Algebras 17

Let 2 be a cell on A = (A(™ ..., A()). Assume that it is the (a,b)th cell
of A9, We say that a cell is above z if it is on A*) for some k > ¢, or if it
is on A) and the row number is strictly smaller than a. We denote the set
of addable (vesp. removable) i-nodes of A which are above z by A?(x) (resp.
R(z)). In asimilar way, we say that a cell is below z if it is on A*¥) for some
k < ¢, or if it is on A© and the row number is strictly greater than a. We
denote the set of addable (resp. removable) i-nodes of A which are below z
by A%(z} (vesp. RY(z)). The set of all addable (resp. removable) i-nodes of
X is denoted by A;(A) (resp. Ri()\)). We then set

Ni(z) = |A(z)| — |R}(=)],  Ni(z) = |A¥(z)| - |R(z)|
Ni(A) = 14N = RN

We dengte the number of all 0-nodes in A by Ng()). Then the U, (g(A™,))-
module structure given to F is as follows.

e\ = z V—N.-"()\/M)I_t, fid= z VN?(F/)‘)[J
s/l wia=[i]

vhiy = vNAN vd) = v Na@A) )

This action is essentially due to Hayashi.
Set Vi, = Uy (g(A™M,))0. 1t is considered as the v-deformed space of V =
BnoKolproj—Hy).

Remark 4.2 If we apply a linear map (A™, ..., AD) — (AO Ay,
we have Kashiwara’s lower crystal base which is compatible with his coproduct
A_.

On the other hand, if an anti-linear map (A®™, ... ,)\(l)) — ()\(m)’, ceey )\(1)’)
is applied, we have Lusztig’s basis at 0o which is compatible with his ceproduct.
We denote it by F,.

Set L = @&Q[v](vix and B = {A mod v}. Then it is known that [L, B) is
a crystal base of F,. We nextly set Ly = V, N L, and By = (Lo/vLo) N B.
Then general theory concludes that (L, Bp) is a crystal base of V,,.

Definition 4.3 We say that X is (71, ..., vm:7)- Kleshchev if X modv € By.
We often drop parameters and simply says X is Kleshchev.

It has the following combinsatorial definition. We say that a node on A
is good if there is ¢ € Z/rZ such that if we read addable i-nodes {write A
in short) and removable i-nodes (write R in short) from the top row of A(™
to the bottom row of M1 and do RA deletion as many as possible, then the
node sits in the left end of the remaining R’s. (I will give an example in the
lecture.)
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Definition 4.4 X is called (7. ....%m;7)- Kleshchev if there is a standard

tableau T of shape X such that for all k, s a good node of the subtableau
T<x which consists of nodes , . , by definition.

Theorem 4.5 (Ariki) We assume that v; = ¢*,q = V1. Then D* # 0 if
and only if X is (1. .., ym;7)-Kleshchev.

(How to prove) We show that canonical basis elements G(\) (A=Kleshchev)

have the form
GO =X+ en(v)u

HDOA

On the other hand, the Specht module theory constructed by Dipper-James-
Mathas shows that the principal indecomposable module P* for D* # 0 has
the form
P =$*+3 " my,S*
MDA
Comparing these, and recalling that A € F is identified with S, we have the
result. B

To know the form of G()\), we have to understand higher level v-deformed
Fock spsces.

Definition 4.6 Take v = (v1,...,vm) € (Z/rZ)™. If 7= (F1.-..,Fm) € Z™
salisfies 4, modr = for all k, we say that 7 is a lift of ~.

Theorem 4.7 (Takemura-Uglov) For each ¥ € Z™, we can construct higher
level v-deformed Fock space, whose underlying space is the same as F,.

It has geometric realization due to Varagnolo and Vasserot. For reader’s
convenience, I also add it here. Let V be a Z-graded C-vector space whose
dimension type is (d;)icz. We denote by V the Z/rZ-graded vector space
defined by V; = @jeV;. We set VJZ, = @;»V,. Let

Eyv = @ Home(V;, Vi), Ey=_ & HomeiV;, V).
i€ €L/rE

and define By, = {z € V| z(V;») C Vj»:}. Then we have a natural
diagram

Ey < Ey, > Ey
We consider 4 := £t*[shift]. Then it defines a map from the derived category
which is used to construct U, (g(Ail_)l)) to the derived category which is used
to construct U, (§(As)). Let n be anti-involutions on both quantum algebras

which sends f; to fi respectively.
Recall that F_7 is a Uy(g(As))-module. We then have the following.

-
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Theorem 4.8 (Varagnolo-Vasserot) For each x € U (g(Aﬁl_)l)), we set

TA = Z N(va(m(z)) v~ Ticsimi 4P\

Then ¥, becomes an U;; (8(A™M,))-module.

Remark 4.9 If we take 4; >> %41, the cenonical basis elements on these
three Fock spaces coincide as long as the size of the Young diagrams indezing
these canonical basis elements is not too large.

Rewark 4.10 If we tuke 0 < —H < -+ < —Fy, < 7 40 the above Fock spuce,
we have Jimbo-Misra- Miwa-Okado higher level Fock spece. This Feck space
is the first example of higher level Fock spaces.

By the above remark, we can use these Fock spaces to compute canonical
basis elements on F, if we suitably care about the choice of 7.

Theorem 4.11 (Uglov) The Takemura-Uglov Fock space has a ber opera-
tion such that @ = 0, f;:x = fix and X has the form A+ (higher terms) with
respect to a dominance order.

The relation between the dominance order in the above theorem and the
dominance order we use is well understood by using ”abacus®. As & conclu-
sion, we can prove that G(A) =X + 3, exu(V)u as desired.

We have explained that how crystal base theory on higher level Fock
spaces fits in the modular representation theory of cyclotomic Hecke algebras.
In particular, Kac ¢-dimension formula gives the generating functicn of the
number of simple H,-modules. Even for type B Hecke algebras, it was new.

4.2 Future direction and Broué’s dream

The original motivalion of Broué and Malle to introduce cyclotomic Hecke
algebras is the study of modular representation theory of finite classical groups
of Lie type over fields of non-describing characteristics. For example, Geck,
Hiss and Malle’s result towards classification of simple modules inspires many
future problems. I may mention more in the lecture on demand.

I would like to end these lectures with Broué’s famous dream. Let B be a
block of a group ring of a finite group G, and assume that it has an abelian
defect group D. Let b be the Brauer correspondent in the group ring of
DCq(D) = Ce(D) C Ne(D). ({D,b) is called a maximal subpair or Brauer
pair.) Then he conjectures that D*(B-mod) ~ D*(Ng(D,b)b~mod),i.e. B and
Ng(D, b} are deriverd equivalent. (Rickard equivalent). To he more precise on
its base ring, let (K. R, k) be a modular system. He conjectures the derived
equivalence over R.
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Let ¢ be a power of a prime p, G = G(g) be the general linear group
GL(n,q), and k be an algebraically closed field of characteristic [ # p,
(K, R,k be a l-modular system. Assume that | > n, and take d such that
dIBa(q), ®a()lq»2(q" — 1)+ (g — 1) = |G(g)], Where ®4(q) is a cyclo-
tomic polynomial. We take B to be a unipotent block. In this case, unipotent
blocks are paramerized by d-cuspidal pairs (L{g), A\) up to conjugacy. Here
L(q) is a Levi subgroup, X is an irreducible cuspidal K L{g)-module. Further,
D is the I-part of the center of L(g). (L(g) is the centralizer of a ” ®4-torus”
S(g).) If we set W(D, ) := Ng(D, A)/Ce(D), it is isomorphic to G(d, 1, a)
for some a. W (D, )) is called cyclotomic Weyl group. These are due to
Broué, Malle and Michel.

In this setting, Broué, Malle and Michel give an explicit conjecture on
the bimodule complex which induces the Rickard equivalence between B and
Ne (D, bjb. It is given in terms of a variety which appeared in Deligne-Lusztig
theory to trivialize a L(g)-bundle on a Deligne-Lusztig variety. Going down
to the Deligne-Lusztig variety itself, it naturally conjectures the existence
of a bimodule complex which induces derived equivalence between B and a
deformarion ring of the group ring of the semi-direct of S(g), with W{D, ) ~
G(d. 1,a). This conjecture is supported by the fact that they are isotypic in
the sense of Broué.

It is expected that the deformation of W(D, )) is the cyclotomic Hecke
algebra we have studied in these lectures. Hence, we expect that cyclotomic
Hecke algebras with m not restricted to 1 or 2 will have applications in this
field. We remark that the Broué conjecture is not restricted to GL(n, ) only.
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AN INTRODUCTION TO GROUP DOUBLECROSS
PRODUCTS AND SOME USES
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1 INTRODUCTION

Factorisations of groups have been sudied for a long time. and it is well known
that Hopf algebras can be constructed from them [16, 11]. In this article I
shall review this material in the finite group case, and then comment on some
more recent developnients on quantum doubles and duality (2, 5]. Then I
shall discuss the relation between group factorisations and integrable models,
including the Hamiltonian structure and some speculations on the quantum
theory. This is based on the inverse scattering process [8, 14, 15], using a
formalism emphasising the algebraic structure [3, 4]. Finally I shall mention
some recent work connecting group doublecrossproducts and T-duality in
sigma models in classical field theory (9, 10, 6].

I have worked in these areas jointly with S. Majid (on Hopf algebras and
T-duality) and with P.R. Johnson (integrable models). I would like to thank
the organisers of the symposium for inviting nie to speak.

2 Group doublecross product

A group doublecross product is a group X which has two subgroups G and
M so that every element z € X can be factored uniquely as z = su for s € M
and u € G, and also as z = vt for t € M and v € G. We use the notation
X = G <4 M to denote a doublecross product. For a finite group X we need
only find two subgroups G and M so that G N M is just the idenrity, and
where the product of the orders of G and M is the order of X.

Example 2.1 Consider the group X = Sz X S3 as the permutations of 6
objects labelled 1 to 6, where the first factor Sz x {e} leaves the last 3 objects
fized, and the second factor {e} x S5 leaves the first 3 objects fixed. We take G
to be the cyclic group of order 6 generated by the permutation 1¢ = (123)(45),
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and M io be the cyclic group of order 6 generated by the permutation 1, =
(12)(456). Our convention is that permutations act on objects on their right,
and 1¢ applied to 1 gives 2. The intersection of G and M is just the identily
permutation, and counting elements shows that GM = MG = S3 x S3. We
write each cyclic group additively, for example G = {0¢, 1¢.2¢, 3¢.4¢, 5¢}.

Example 2.2 To show that even a simple group can be a doublecross product,
consider X = A, forn odd, which is simple for n > 5. This is the doublecross
product of the subgroup G, a cyclic group generated by the n-cycle (12...n),
and the subgroup M, consisting of the permutations in A, leaving the first
object fized.

We call the group doublecross product X = G ¢ M self dual if there
is a group automorphism 6 : X — X which has the property that G =
M and §M = G. Such an automorphism 9 we will call a factor reversing
automorphism. The first example above has a factor reversing automorphism
given by conjugation with the permutation (14)(25)(36). The second example
does not have one, as the sizes of the subgroups G and M are different.

The factorisation gives rise to group acticns as follows. If we take su € X,
where 4 € G and s € M, then we can uniquely write this as su = vt, where
t € M and v € G. If we choose to write these unique elements as v = sbu
and t = sau, then we have su = (sbu)(san). The usual group laws for
X give the following rules for the binary operations b : M x G — G and
4: M xG — M. Firstly b: M x G — G is a left action of the group M on
G, and 94: M x G — M is a right action of the group G on M. The identity
elenient is left fixed by these actions, and finally sbuw = (spu)((seu)>w) and
psau = (pa(sbu))(sau).

In our first example the action of the element 1,4 on G is seen to be given
by the permutation (1¢g,5¢)(2¢.4¢), and that of 15 on M is given by the
permutation (lM, 51\.1)(2M, 4M)-

These actions give an alternative way to describe group doublecross prod-
ucts by specifying the groups G and M, and the actions > and 4. The group
X which is factored by G and M can be realised as the set G x M with group
operations (u, s)(v, t) = (u(sbv), (sw)t) and (u,s)™ = (s pu~?, s lau™?).

3 Hopf algebra bicrossproducts

There are two obvious constructions of a Hopf algebra from a group. One
is the group algebra, and the other is the commutative function algebra. If
we have a group which is factored into two subgroups, we can try to use the
group algebra construction on one subgroup and the commutative function
algebra on the other subgroup. These interact via the actions discussed in the
last section, and the result is an example of a Hopf algebra bicrossproduct. If
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we combine the group algebra kM (with basis s € M) and the commutative
function algebra k(G) (with basis 4,,, the function taking the value latu € G
and zero elsewhere), we get the Hopf algebra bicrossproduct H = kMpak(G),
with basis s ® §, and operations

(8R8.)(t®6,) = bupu(st®4,), A(s®6,) = ) s®6, V5w,

Ty=u
1= Ze@o(su, (s ®0,) = dye.

S(s®by) = (.‘3<1u)"l ®(spuy-1, (s®6,)° = PR Y .

Here A denotes the coproduct, € the counit and S the antipode of the Hopf
algebra. Additionally we have given a formula for the star operation. This
Hopf algebra is, in general, neither commutative nor cocommutative. The
dual H* = k(M)mkG can also be made into a Hopf algebra as follows:

(6 Q@u) (8 ®V) = Osque (s ®uv), A(d:;Qu) = z I, Rb>uRIHQu

ab=s

1 =Z(53®e, €(0s @u) = b,

S(63®U) = é(squ)“ 8-(3|>U)—l, (6,;@'“)t = s<m®u—l.

If the group doublecross product has a factor reversing automorphism
0:X =GraM — X, there is a Hopf algebra isomorphism 8 : kMpek(G) —
k(M)»akG given by 8(s®4,) = Og(sou) ® O(s<u), so we can say that the bi-
crossproducts are self-dual.

From the group doublecross product X = G <4 M we can construct
another group doublecross product, Y<X. Here Y = G x M°P with group
law (us).(vt) = uvts, and the actions (for us € X and vt € V) are

uswt = ({saw)ts 'but) " (sav)

usbut = us(vi)(us) ™t = u(spv)((saw)ts bu)((sqw)ts T au?).

Now we can construct the bicrossproduct kXak(Y") by the previous formulae.
In fact EXpak(Y) is isomorphic to the Drinfeld double D(H) = H*? 0a H
(with actions the mutual coadjoint actions), by the map

¥ : D(H) - kXvak(Y), 90, Qu®t®4,) = (spu) 't ® Sy(ran)-15-1t -
As D(H) is quasitriangular, kXtek(Y) is also quasitriangular, with

R = z V7 ®6us ® 57 ® S(sprpe-
u,v€G, steM

The Hopf algebra kXpak(Y') is typically rather large (of dimension the
order of X squared). In the self dual case we can consider a much smaller
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Hopf algebra (of dimension the order of X), constructed as follows. There is
a subgroup X9 of X consisting of those elements z for which #z = z, and a
subgroup Y? of Y consisting of those elements y for which 8y = 3! (inverse
in X). The actions 5,3 restrict to X® Y?, forming a double cross product
group Y?aX? factorising into Y, X% The corresponding bicrossproduct
Hopf algebra kX®ak(Y?) has an isomorphic coalgebra to that of kMpek(G).
There remains the problem of whether kX °cak(Y?) is always quasitriangular,
and I would be very interested in a proof or counterexample.

4 Integrable models in field theory

Here is & (not entirely standard) definition of an integrable classical field the-
ory. I donot claim that it is equivalent to any other definition of integrability,
but it has its uses, for example in constructing some of the ‘missing charges’
in Affine Toda theory [4]. We begin with:

1) A group doublecross product X = GM = MG. Here G is called the
classical phase space.

2) Aset S, called the classical space-time.

3) A functiona: S — M, which we shall call the classical vacuum map.

Each ¢y € G contains the information necessary to describe a solution of
the classical field theory at every point in space-time. Tb recover the field at
a point = € S, we perform a factorisation in X:

a(z)go = d(z)b(z), d(z)e€G, blz)e M.

The field at the point z € S is encoded into b(z) or ¢(z], in a manner which
is dependent on the exaniple of the field theory being considered.

To see that this definition of integrability is related to other definitions,
we show how it gives rise to a ‘linear system’ for the theory. If we assume
that S is a manifold. and differentiate the equation a(z) ¢g = ¢(z) b(z) along
the vector (z;g) in S, we get (using subscripts for directional derivatives)

By = aga”'¢ — b7t

If the group X was a loop group, with a complex parameter ), then this
equation would look like the usual sort of linear system for a matrix valued
function ¢(z, A).
I shall now consider a particular example, the sine-Gordon equation,
u O 4m?

5):7 - ’a—z—z = —Tsin(ﬂu),

for u(t, z) € R, and m and 3 constants. This is a nonlinear wave equation in
one space and one time variable, which has soliton solutions. Though it does
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not exhibit the interesting phenomena of soliton decay and coalsecence seen
in the principal chiral model, it is still an interesting case for study, and the
quantum theory is still very difficult.

We shall give a method of solution for the sine-Gordon model which gives
only the soliton solutions. Take a basis of the Lie algebra su; to be

3_1(0 z) 3_1(0 1) 9_1(1' 0)
V7 g\ o) 27 4\-1 0/ 7 a\o -i/~

We define the group M to consist of analytic functions ¢ : €* — M3(C), which
are unitary on R* and satisfy the symmetry condition

sse(N) szt = f(N)e(-2),

where f{)) is any scalar valued function. The group G consists of meromor-
phic functions ¢ : Coo — M3(C), which are unitary on R, and also satisfy
the symmetry condition. The solution u(t,z) to the sine-Gordon equation
is encoded into the meromorphic loops ¢(A) by the additional normalisation
condition that ¢(c0) = exp(Fus;z) and ¢(0) = N exp(—Fus;), for N a con-
stant matrix commuting with s;.

The classical vacuum map a : R4' — M is defined by

a(t,z)(A) = exp(—2mAs, (t + ) — 2mA7ts (¢t — 1)) .

The elements of the group G can be written as products of a constant matrix
and factors of the form

A— &
P + ~P;
: A— [eH
where {@|,....a,} is the set of poles of the element, and every P; is a Her-

mitian projection on €2 (We skirt over the implications of the symmetry
condition and the resulting distinction between solitons and breather solu-
tions at this point.) Note that the projecticns change if the poles are taken
in a different order in the product. In terms of the solitons in the model, the
positions of the solitons are encoded into the projections, and their momenta
in the pole positions.

We can now consider the algebra of observable functions, which classically
is just C(G), the commutative algebra of functions on the classical phase
space. This can be enlarged to the Hopf algebra CAMb«C(G) by including the
group algebra of M, which contains things like space and time translations.

In the case of the quantum theory, we could conjecture that all we had
to do to recover the quantum theory was to g-deform the Hopf algebra to
get CMp4C(G),, and take this to contain the complete algebra of quantum
observables. However in the example of the sine-Gordon model this would
require deforming the algebra of functions on a meromorphic loop group, and
I believe that this Las not been done. On an even more speculative note,
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as the space-time is imbedded in the group double by the classical vacuum
nmap, if we deform the double we should also deform the vacuum map and
possibly also the space-time. In this manner the space-tinie could become
a non-commutative object, with its geometry determined by the field theory
(7).

I should elaborate on what I mean by a complete quantisation. This is a
niethod of solution to the quantisation of a system which does not destroy
information (though the usual rules about similtaneous measurement given by
the uncertanty principle must still apply). For example the quantum inverse
scattering method for 1 + 1 dimensional integrable field theories proceeds
by quantising the scattering of the system. The scattering contains all the
information present in the dispersive compcnent of the solution, that is the
part of the solution which will eventually decay to the vacuuni when viewed by
an observer moving at any velocity. However the scattering does not contain
all the information on the solitons in the system, it forgets their positions
(and in the case of breathers, their phases). For a more physically important
example, consider the standard model in particle physics. Here the scattering
can be calculated by Feynman diagrams and renormalisation. However there
are still outstanding problems in the theory, outside the scope of existing
niethods of solution. These include quark confinenient, and calculating the
binding energy of the deuterium nucleus. Someone who doubts this should
consider why a lot of effort is put into lattice models and other approxiniate
niethods to consider these questions. The problem is again that the method
of quantisation does not consider the positions of particles on an equal footing
with the momenta, and it is simply not possible to add the positions later as
an afterthought. Calculating with positions included brings us into the realm
of non-perturbative methods, as where distances are sniall the fields tend to
be high.

The sine-Gordon model is a Hamiltonian system, and we can calculate its
symplectic form in terms of the loop groups G and M [3]. Take a point ¢y
in the phase space G and two vectors (changes in @), {¢o;vo) and (do; wo).
Then we can differentiate the factorisation a(t,z) ¢ = ¢(t.x)b(t.x) with
respect t0 @g to get avg = Ppb + Pb, and awy = ¢ub + G by. Now the
symplectic form is

di

w(¢o; vo, wp) = -— lim f’lﬁ'ace b b lo gy — bublé l¢v] =R X

477 R—oo
where the contour 7 is a small clockwise circle and a large anti-clockwise circle
around the origin. Here ‘small’ neans that all the poles of the niercmorphic
function ¢y lie outside the contour, and ‘large’ means that all the poles lie
inside it. The points £ = —R and z = R are taken to lie on either side of the
‘interesting’ region, that is where the fields are substantially different from
the vacuum. The value of the formula is independent of £.
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Because of the role of the order of the poles in the factorisation, the group
G has a rather unusual algebraic structure:

Definition 4.1 The order actions b and 4 of G on G are defined by order
reversal in the following manner: If ¢ € G has poles at a set of complex
values {ay,...,a,} and v € G has poles at {fB,...,Pn}, we have ¢yp =
(59) (o), where ¢y € G has poles at {By,...,0m> and ¢ € G has
poles at {a\,....a,}. This action is only defined when the sets of poles are
disjoint, but this is true for a dense subset ¢f G X G.

From an explicit calculation of the symplectic form for sine-Gordon soli-
tons in terms of the pole positions and the projections [1, 3] we find the
following method to calculate the symplectic form of the multi-soliton solu-
tions. If we take ¢ = G, for any pole a of ¢y we can write ¢9 = (a7, Where
(o has only a pole at o, and 7, is regular at a. If we take vy and wgy to be
changes in ¢y, then

W(¢0;U0, 'UJ()) = zw((a;Caanw) \ (1)
where ((a; {aw) is the vector corresponding to the vector (¢o; wp). Now we

would like to study the corresponding Poisson structure on G. This is a
section v = v, ® 2 of TG R TG defined by

w(o; vo, M1(%0)) v2(dc) = vo,

for any vector (¢o; vp), omitting the summation. To see what cocycle condi-
tion is obeyed by 7y, we suppose that ¢ has poles at the points in U3, where
a and j are disjoint finite subsets of C. Then we can write ¢g = X3 = Xs%a:
where X and 1, have poles in @ and xg and ¢ have poles in §. Then, using
(1),

w(Bo:v0.w0) = W(Xai Xavs Xaw) + W(Xgi Xous Xpw) -
The correspondence between the left ordered coordinates (Xa,Xx3) and the
original group element is ¢ = xa(X7"Bxs) = Xﬁ(XEl‘SXa)- We see that the
vector corresponding to (0, v1(xg)) in left-ordered coordinates is xo (xZ 671 (x23)),
and that corresponding to (71(xa),0) is Xﬁ(XEl‘S'Yl(Xa))~ Now if we take

bo) = Xa(x2'B71(x8)) ® Xalxz Br2(X5))
+x3(x5 B (Xa)) ® X8(X5 B12(Xa)) » (2)

we find that
w(¢o; vo, M1(¢0)) v2(d0)

w(Xas Xaws N(Xa)) X8(X3 ‘572(>§a))
+ (X3 Xav, N (X8)) Xa(Xg B72(X8))
X8(X5 BXav) + Xa(XaBXss) = W,

as required. We see that (2) does not look at all like the standard cocycle
condition for a Poisson-Lie group.
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5 T-duality in sigma models

In this article I will mainly mention material from [9] and [10]. T-duality had
its origin in String Theory, but I shall just consider it within classical field
theory.

Suppose that we have a doublecross product group X = G<M, where G
and M are Lie groups. Then we can split the Lie algebra of X aso =g+ m,
where g and m are the Lie algebras of G and M respectively. In addition
suppose that there is an adjoint-invariant bilinear form (, } on » which is zero
on restriction to g and m. This means that m = g*®, that the factorisation
is a coadjoint matched pair and that » = D(g), the Drinfeld double of g. On
R? we use light cone coordinates z, =t +z and z_ =t — z, where ¢ and z
are the standard time-space coordinates, and use subscript &+ for the partial
derivatives with respect to the light cone coordinates.

To specify the model we suppose that d is the direct sum of two per-
pendicular subspaces £_ and £_. The solution to the model is given by a
function k : R — GaM, with the properties that k. k~'(z,,z_) € £ and
k_k7Y(zy,7_) € & for all (z4,2_) € R:. Then we see that, if we factor
k=usforue Gand se M,

uluy + sgs7le u"lé}_u .

If the projection 7, :  — g (with kernel m) is 1-1 and onto when restricted to
u~'&_u and u~'&, u, we can find graph coordinates E, : g > mand T, 1 g = m
so that

(E+E(6):€€g} = v '&u and {E+Tu(§):€€g} = u '€ u

It follows that s_s™! = E,(u"'u_) and s, s7! = T,(u'u_). From the identity

(8457 — (sos7V)y =[5-871, 5457
we deduce that u(z,, z_) satisfies the equation
(Tuu'u). — (Bulu'wo)), = [Bulu uo), Tl us)],  (3)

which is of the type known as a sigma model. Klimeik shows that the La-
grangian density
— (Bulu™u) i) (4)

gives rise to (3) as its equation of motion.

The dual theory is given by the factorisation k = tv, where { € M and
v€EG. fwelet E, :m — gand T} : m — g be the graph coordinates of '€, ¢
and t~'€_t respectively, then ¢(z,,z_) obeys the dual equation

(Tt ') — (B(t't)), = [Eft™'t), Tt "e0)] (5)
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These are the equations of motion for a sigma model with Lagrangian
L = (Bu(t~'t.),t7',). (6)

These two equations are for functions ¢ and u into different groups, but are
both descriptions of the model defined on X. The (u, s) and (t,v) variables
are related by the actions of the double cross product group structure, tv =
(tov)(taw) = us.
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Abstract
Let U, be the quantum group associated to a Lie algebra g of rank n.

The negative part U, of U, has a canonical basis B with favourable
properties (see Kashiwara [3] and Lusztig [6, §14.4.6]). The approaches
of Lusztig and Kashiwara lead to a set of alternative parametrizations of
tlie canonical basis, oue for each reduced expression for the lougest word in
the Weyl group of g. We describe the authors’ recent work establishing
close relationships between the Lusztig cones, canonical basis elements
and the regions of linearity of reparametrization functions arising from
the above parametrizations in type A4 and give some speculations for
type An.

Keywords: Quantum group, Lie algebra, Canonical basis, Tight monomi-
als, Weyl group, Piecewise-linear functions.

1 Introduction

Let g be a finite-dimensional simple Lie algebra over C and U,(g) be the
corresponding quantized enveloping algebra over C[v,v7!]. Let

U(g)=U, U9 U}

be the triangular decomposition of U/y(g). Let B be the canonical basis of U,
introduced independently by Lusztig and Kashiwara. It is natural to ask how
the elenients of B are expressed in terms of the generators F, F3,..., F, of
U, . This is a difficult question which is known completely in only a few low
rank cases, but the attempt to understand it has led to a remarkable theory
of piecewise-linear combinatorics associated with the canonical basis.
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In this paper we consider only the case in which g has type A,,. We describe
the situation for small values of n before giving some speculations for arbitrary
n,

First suppose that g has type 4;. We write;

N = {e€Z:a>0},
2% — pe
[(l] = ppmp fora € N,

[a]! (1[{2] - [a]. fora €N,

and F\¥ = F¢/[a)".

It was shown by Lusztig [4] that B = {F| {® . 2 € N}. Thus the canonical
basis elements are the quantized divided powers of the generator F).

Next, suppose that g has type As. The canonical basis in this case was also
determined by Lusztig [4]. We have

B = (FOFPF? . abceN, b>a+c}
U{F(“)F(b)F(c) : a,bceN, b>a+c}
2 1 2 - U B = .

When b = a + ¢ one has the relation
(a) pr(ate) () () pr(a+c) pa(a)
F 1 Fz F | Fz F 1 Fz ’

but apart from this the above elements of B are all distinct. Thus in this case
each canonical basis element may be written as a monomial in the generators
F\, F;. The two types of monomials which arise are related to the two reduced
decompositions of the longest element wy of the Weyl group W of g. We have
W = (s), 52) and wp = $1525) = $25152. Each of these reduced words for wg
gives rise to a type of monomial in the canonical basis.

We now turn to the case when g has type A;. Lusztig [5] obtained many,
but not all, elements of B as monomials in the generators Fy, F3, F3 and gave
an exaniple of an element of B which could not be written as a monomial
in Fy, F;, F3. The remaining elements of B were determined by Xi [10]. In
order to describe the monomials in B we consider reduced words for wy.
In type A3 wo has 16 reduced expressions. However it is natural to divide
them into equivalence classes called commutation classes; two reduced words
being equivalent if one can be obtained from the other by a succession of
commutations in the Coxeter generators of W. For example, s15;828;5382
is in the same commutation class as s35)52335) 82, where the generators are
numbered as in the Dynkin diagram (see Figure 1).
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Figure 1: Dynkin diagram of type Aj.

There are 8 commutation classes of reduced words for wy in type A;. Each
of these gives rise to a family of monomials in Fy, F;, F3 which lie in B. For
example, the reduced word wy = 81535258352 gives rise to monomials

FOFOFOFIEIFD  ab,c,de, f €N,

and such a monomial was shown by Lusztig to lie in the canonical basis B
provided
c>a+d, c>b+e, d+e>c+f

These inequalities come fron1 considering two consecutive occurrences of a
given Coxeter generator s; in the given reduced word. The sum of the expo-
nents corresponding to these occurrences of s; is less than or equal to the sum
of the exponents corresponding to Coxeter generators s; between these two
occurrences of s; such that s; does not commute with s;. Lusztig oktained 8
families of monomials in B in this way, and the remainiug elements of B de-
termined by Xi are linear combinations of monomials with coefficients which
are quantum binomial coefficients.

We now suppose that g has type A4. Here the situation is niore involved and
has been investigated by the authors. We shall outline the situaticn in the
present paper, and hope to publish the proofsin a subsequent article. For each
reduced word wg = $;,8;, - * - iy, Where k = €(wp), we write i = (4,13, .. ,4x).
For each such i, we define a subset C; of N* whose definition is motivated by
the rule mentioned above for a mononiial to lie in B in type A3. We define C;
to be the set of those a € N* such that for each pair t,# € [1, k] with t < ¢/,
Gy =iy, i, # 4, for t < p < t, we have Zpap > a, + ap, summed over all p
with t < p < ¢’ such that s, does not commute with s;,.

The cone C; will be called the Lusztig cone associated with i. The elements
of C; give rise to nionomials. Let

M, = {Fflm)F,-(:Z) . Fi(:’“) ca=(a,ag,...,a) € Ci}.

It was shown by Marsh [7] that when g has type A4 we have M; C B for
each i. In type A4 there are 62 commutation classes of reduced words for wy,
and we obtain in this way 62 families of monomials in the canonical basis.
These are far from being the only elements of B, however, and the remaining
elenients are not known as expressions in terms of F|, Fy, F3, Fy.
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2 PBW-type Bases and the Canonical Basis

We shall now recall Lusztig’s approach to the canonical basis. For each re-
duced word i for wo, Lusztig defined [4] a PBW-type basis B; of U;. The
reduced word wp = $;, i, * -  Si, gives rise to a total order on the set &t of
positive roots of g. We have

&t = {a',a?,..., "},
where
1 2 k
o =0y, 0 =s,(0y,), . 00 =885, 8, (00s,):
and ay,09,...,a, are the simple roots. By using braid group operations,

Lusztig defines for each a € @* a root vector Fo € U, beginning with
Fa, = F.. We wiite F® = FSPF® ... F% for ¢ = {1, 3,...,0) € N,
Then the set B; = {F° : ¢ € NF} is a basis for U, called the PBW-type

q ?
basis associated to i.

The lattice £ = C[v]B; was shown by Lusztig to be independent of i and
there is a bijective map

B b Ri
b — Ff

such that b = F¥ mod vL. We write ;(b) = c. Then the map y; : B — N¥
is bijective. This gives, for each i, a parametrization of B by elements of N*,

Lusztig introduced [6] two particular reduced words j, j for wo. In type A,
these are as follows. Suppose the vertices of the Dynkin diagram of A, are
labelled as in Figure 2.

Figure 2. Dynkin diagram of type A,.

Let jbe135---246---135---246---, where k = %n(n + 1) factors are taken,
and let j be
246---135---246---135. .-, where again k factors are taken. Then j,j are
reduced words for wp and their commutation classes are as far apart as pos-
sible, in the sense that they give opposite orderings on ®*, Consider the
parametrizations ¢; : B — N* and py : B = N¥ of B corresponding to j, j/
and let R = pyp; ' : Nk — N be the bijective map which relates them.
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The function R is the restriction to N¥ of a piecewise-linear map R : R* — RF
and the results in low rank cases suggest that the regions of linearity of R are
related to the different types of canonical basis elements.

For example, in type Ay, we have j = 121, j/ = 212, and R has two regions
of linearity. These correspond to the two types of monomial in the canonical
basis.

In type A3, the function R has 10 regions of linearity, and 8 of these regions
correspond to the 8 families of monomials in the canonical basis. The re-
maining 2 regions correspond to the remaining non-niononiial elements of B
obtained by Xi. Tlese two regions may be distinguished [rom the other 8
regions as follows.

In type Az, we have R : R® — R®. The 8 regions of linearity of R which
give rise to monomials in B are each defined by 3 inequalities whereas the 2
remaining regions of linearity are each defined by 4 inequalities. This suggests
that regions of linearity defined by the mininium number of inequalities might
give rise to canonical basis elements of a particularly favourable form.

This turns out to be the case in type A4 also. This time we have a piecewise-
linear map R : R!® — R which was shown by Carter to have 144 regions of
linearity. Of these regions, 62 are defined by 6 inequalities, 70 by 7 inequal-
ities, 10 by 8 inequalities, and 2 by 11 inequalities. It is striking that the
number of regions defined by the minimum number of inequalities is equal to
the number of commutation classes of reduced words for wy.

The authors have shown that in type A4 there is a natural bijection between
commutation classes of reduced words for wy and regions of linearity for
R defined by the minimum number of inequalities. This comes about as
follows. For each reduced word i for wo we have a corresponding family M;
of monomials in B, as described above. We consider the set of points in N'°
which parametrize these elements of B under the map ¢;: let Xt = @;(M;).
Then one can show:

(a) X; is the set of all points in a region of linearity X; of R with coordinates
in N.

(b) X; is a region defined by the minimum number of inequalities.

(c) The map i — X; is a bijection between commutation classes of reduced
words for wy and regions of R defined by the minimum number of inequalities.

In fact, both the set of commutstion classes of reduced words for wg and the
set of regions of R defined by the minimum number of inequalities can be
given a natural graph structure, and the map i — Xj is then an isomorphism
of graphs.
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3 Rectangle Calculus

It is natural to ask whether the region X; can be described in terms of i
without using ideas concerned with the canonical basis, but simply in com-
binatorial terms. This can be done by a form of combinatorics which we call
the rectangle calculus. The basic idea is to associate with the reduced word
i a set of linearly independent vectors such that X; is the set of all linear
combinations of these vectors with non-negative coefficients. These vectors
will be called spanning vectors of X;.

We first introduce the idea of a partial quiver. This is a Dynkin diagram with
arrows on certain edges, such that the set of edges with arrows in non-enipty
and connected. An example of a partial quiver of type 47 is given in Figure

3.

Figure 3: A partial quiver of type A;.

We are concerned with partial quivers of type A,, and shall use L or R to

indicate whether an arrow goes left or right. Thus the above partial quiver is
denoted — — RLL—.

The possible partial quivers of type A4 are LLL, RLL, LRL, LLR, LRR,
RLR, RRL, RRR, LL—, —LL, LR—, — LR, RL—, - RL, RR—, —RR,
L-—--L-,——-LR—— -R—,——R.

We shall now explain a procedure by which each reduced word i for wy
in type A, gives a set of %n.(n. — 1) partial qnivers. We first write down
the braid diagram of i. This determines a set of chambers, and for each
bounded chamber we write down the corresponding chanmber set, which is
the subset of {1,2,...,n + 1} corresponding to the strings which pass be-

low the chamber. We illustrate this by the example in which n = 4 and
Wo = 82838453515251538284 — See€ Figure 4,

Each chamber set obtained in this way is a subset of {1,2,...,n + 1} which
is not an initial or terminal subset, i.e. not of form {1,2,...,¢} or {i,i +
1,...,n+ 1} for any .

Let S be the set of all subsets of {1,2,....n + 1} which are not initial or
terminal subsets and P be the set of all partial quivers of type A,,. We shall
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1245
45

2
20X 24

St W N =

Figure 4: A chamber diagram.

describe a bijection from S to P. We first number the edges of the Dynkin
diagran as shown in Figure 5

Figure 5: Edge numbering of Dynkin diagram.

Thus the edges are nunibered 2,3,...,n from right to left and 1,7 + 1 are
regarded as virtual edges.

Let S € S and P be the corresponding partial quiver. P is obtained from S
by the following rules.

(a) H1,n4+1¢ S, the entries in S give the edges of type L in P, edges inter-
mediate between those of type L having type R. The leftmost and rightmost
labelled edges of P have type L.

(b) Now suppose 1 € S. Let ¢ be such that 1,2,...,i € Sbuti-1¢ S.
Then edge 7 + 1 is labelled R and is the rightmost labelled edge in P.

(c) Now suppose n + 1 € S. Let i be such that 4,4+ 1,...,n+ 1 liein S but
i—1¢ S. Then edge i — 1 of P is labelled R and is the leftmost labelled edge
in P.

(d) The elements of S not in an initial segment as in (b) or a terminal segment
as in (c) give rise to edges L or R in P as in (a).

Example.
Letn =13. f S ={1,2,3,4,7,8,11}, then P = - — LRRLLRR - — -.
See Figure 6 for an explanatory diagram.

Applying this bijection S — P to the chaniber sets obtzined from a reduced
word i we obtain a set of 3n(n — 1) partial quivers associated with i. In
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14 13 12 11 10 9 8 7 6 5 4 3 2 1

- - L R R L L R R - - -

Figure 6: How to calculate the subset corresponding to a partial quiver.

the above example with n = 4 and wp = $3535453518251538284 We obtain the
partial quivers shown in Figure 7.

- W N

ot

Figure 7: Partial quiveIS for $9838483818281838284.
We denate by P(i) the set of partial quivers obtained from i in this way.

We now introduce the rectangles which we shall be considering. Let 7,7, k,1 €
N satisfy:

i<ji<l, i<k<l i+l=j+k.
An (i, j, k.l)-rectangle is a rectangle with corners on levels ¢, 7, k,I. It is most
convenient to illustrate this idea by means of an example. See Figure 8.

St W N —=O

Figure 8: Drawing a (0, 2, 3, 5)-rectangle.

The sides of the rectangle have gradient £x/4. The (i, j, k,)-rectangle con-
tains alternate columns of integers starting with the first column if the entry
in it is odd and the second column otherwise. See Figure 9.
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Figure 9: A (0, 2,3, 5)-rectangle.

The columns of integers in the rectangle are interpreted as positive roots; for
example the (0, 2, 3,5)-rectangle contains roots a; + az + a3, az + ag + ay.

We next describe how each partial quiver determines a configuration of rect-
angles. It is again most convenient to explain this by means of an exam-
ple. Consider the case of type Ayp in which we take the partizl quiver
P = - LLRRRLRR — see Figure 10.

(4]
-
w
[
—

1 10 9 8 7 6

Figure 10: The partial quiver P = — LLRRRLRR.

The edges of the partial quiver are numbered as shown. We first divide the
partial quiver into its components, i.e. the maximal subquivers containing a
set of censecutive L's and R’s. The components of our given partial quiver
P are:

- L L - - - - - =—

- - - - - - L - -

- - - - - - - RR

For each component K of P we define positive integers a(K), b(K) with
a(K) < b(K). The integer a(K) is the number of the edge following the
rightmost arrow of K and b(K) is the number of the edge preceding the
leftmost arrow of K. In the above example the numbers a(K),b(K) are as
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follows:
K a(K)  b(K)
- L L - - - - - - 7 10
- - - RRR- - - 4 8
- - - - - - L - - 3 5
- - - - - - - RR 1 4

For each component K of type L we take a (0.a,n+2-b,n+a—b+2)-rectangle
and for each component K of type R wetakea (b—a—1,b—1,n+1—-a,n+1)-
rectangle, where a = a(K), b = b(K). Thus the 4 components of our partial
quiver P = — LLRRRLRR give the 4 rectangles shown in Figure 11.

We now observe that for a component of type L imniediately followed by a
component of type R the two corresponding rectangles fit together from the
left hand corner. Also, for a component of type R immediately followed by
a component of type L the two rectangles fit together from the right hand
corner. This can be observed in the four rectangles above, in which the first
and the second fit from the left, the second and the third from the right, and
the third and the fourth from the left.

We use these rules to superimpose the rectangles obtained from the com-
ponents of the given partial quiver. In the case of the partial quiver P =
— LLRRRLRR we obtain the configuration of rectangles shown in Figure
12.

We next define the centre of such a configuration. First consider the rectangles
in the diagonals from north-west to south-east. The number of such rectangles
in these diagonals in the above configuration is 1, 3,4, 2. It is always the case
that one obtains a set of odd numbers followed by a set of even numbers or
vice versa. We draw the diagonal line separating the diagonal blocks giving
odd and even numbers of rectangles. This is the line ¢ in Figure 13. A
similar phenomienon occurs for the diagonals from northeast to southwest.
The number of rectangles in such diagonals in the above configuration is
2,4, 3,1 and we draw the diagonal line separating the diagonal blocks giving
odd and even numbers of rectangles. This is the line £ in Figure 13. The
point O in which ¢ and ¢ intersect is called the centre of the configuration
and we draw in the vertical line through O, called the central line, m. See
Figure 13.
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- - -RRR- --
A (3.7,7,11)-rectangle

A (0,3,7,10)-rectangle A (2,3,10, 11)-rectangle
Figure 11: The 4 rectangles for — LLRRRLRR.

e

Figure 12: Configuration of all 4 rectangles.

43
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Figure 13: Configurstion of all 4 rectangles with central line.

We consider the left and right hand corner points in this configuration. These
are labelled A, B, C, D, E in the above example. To each such corner point
we associate the rectangle which has the given point as a vertex and whose
edges through this point extend as far as possible in the figure. (The vertex of
the rectangle opposite to the given corner point may not be explicitly shown
in the figure). For each such corner point V we define a set of positive roots
&+ (V). This is the set of all positive roots in the rectangle associated with
V on the same side of the central line m as V itself.

Thus in the given example, we have:

®Y(A) = {ag, a1 +az+ a3+ ag,03 + a4 + a5 + a3}

1 (B) = {ar.a5+as+ a7+ as+ag}

PHC) = {as+ar+as, a4+ as+ ag+ oy + ag + ag + ano}

&t (D) = {azg,o0 + o +a3+ a3+ as, o0+ a3+ a3+ a5 + ag + a7}
<I>+(E) = {aip. 08 + ag}

We then define ®*(P) to be the union of the sets ®* (V) for all corner points
V in the configuration. This is always a disjoint union. In the given example
we have:

®*(P) = {og, a1+ 02+ a3+ g, 03 +as+ a5 + ag, 7,
a5 + ag + a7 + ag — ag, g + a7 + g,
a4 + a5 + Qe + a7 — g + Qg + X9, A3, ) + Q3 + a3 + a4 + 5,
g + 03+ (g + a5 — (g + 7, 00y, (g + Qg ).

We now define a vector vp € N* whose coordinates are all 0 or 1. Let j be



Canonicai Bases and Piecewise-linear Combinatorics 45

the reduced word

135---246---135---246 - - |

considered above, and let a!,a?,...,a* be the corresponding order on the
set of positive roots. We define vp as the vector whose ith coordinate is
1if o € ®*(P) and is 0 otherwise. We also define vectors v; € N* for
J =1,2,...,n, where the ith component of v; is 1 if the ith letter in j is j
and is 0 otherwise.

These vectors vp, P € P(i) and v;, j € {1.2,...,n} turn out to be our
required spanning vectors for the region Xj.

Proposition 3.1 Suppose that g has type Ay and let j be the reduced word
1324132413 for we. Let i be any reduced word for wo and P(i) be the set of
partial quivers associated with i. We have [P(i)| = 6. Then the region X;'
associated with i is the set of all non-negative integral combinations of the
vectors vp, P € P(i), and v; for1 < j < 4.

This Proposition explains how the regions X;* can be described by the rect-
angle combinatorics.

4 Speculations for type A,

It is natural to ask whether the set X; defined as the set of non-negative
linear combinations of the vectors vp, P € P(i) and v;, 1 € j < n is a region
of linearity for R : R* — R* in type A,. No counter-example is known to
the autliors. If so, are the Xj the only regions of linearity of R defined by
the minimum number of inequalities? This would give a bijection in type A,
between commutation classes of reduced words for uty and regions of linearity
for R defined by the mininium number of inequalities.

The set M; of monomials corresponding to points in the Lusztig cone Cj is
not in general contained in the canonical basis in type A,. It is nevertheless
possible to consider a subset of B in bijective correspondence with C; by
means of Kashiwara's approach to the canonical basis. Kashiwara (3] defines
certain root operators F; which lead to a parametrization of the canonical
basis B for each i by a certain subset K; C N* which we call the string cone.
This gives a bijection
?/)i :B—= K i

It has been shown independently by Marsh [8] and by Premat [9] that C; C K;
for each i, i.e. that the Lusztig cone lies in the string cone. Thus we obtain
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a subset 44 1(C;) € B. This subset is equal to the set of monomials A
when n < 4, but does not consist of monomials in general. Using Lusztig’s
parametrization

Yj . B— Nk
where j = 135---246---135---246- - - , this subset ¢;*(C;) of B corresponds
to a certain subset of N*. Let

Sl K; - Nt
be the transition map given by S;i = ", It is known that in type A,, the
images of the spanning vectors of the Lusztig cone C; under S} are the vectors
vp, P € P(i) and v;, 1 < j < n given by the rectangle combinatorics. This

can be proved using a transition function introduced by Berenstein, Fomin
and Zelevinsky [1].

Finally, what can be said about canonical basis elements corresponding under
5 to regions of linearity of R not defined by the minimum number of inequal-
ities? The results of Xi [10] in type A3 are interesting in this respect. In type
Aj, Lusztig’s function R : R® — R® has 10 regions of linearity, 8 of which are
the regions Xj for the different commutation classes of reduced words i for
wp. These are all defined by 3 inequalities. The remaining two are defined by
4 inequalities and we denote these by Xy and X;9. We now define Xi+ to be
the set of points in X; whose coordinates are all real and nonnegative. Thus
we have —
XrCXrcx
and X' is the set of integral points in X;". We define X3 and Xjj, similarly.

We have additional inequalities defining X; asserting that all coordinates are
non-negative, but some of these inequalities will be redundant. In fact each of

EIE 8 regions X;" can be defined by 6 inequ’a_\‘li’tieS and, for suitable nuinbering,
Xy can be defined by 8 inequalities and X}, by 9 inequalities. The regions
Xt are called simplicial regions as the number of defining inequalities is equal
to the dimension of the aml)‘ignn space. 3(:;: can be written as the union of

two simplicial regions, and X[} as the union of four simplicial regions.

Xi obtains 8 families of monomials in B, which are parametrized by the inte-
gral points in the 8 simplicial regions X;". In addition he obtains 6 families
of elements in B which are not monomials. These are parametrized by the
integral points in the two simpliciafllegions whose union is X and the four
simplicial regions whose union is X{;. The canonical basis elements corre-
sponding to a given region are all of the same type, i.e. they can all be
expressed as a linear combination of monomials corresponding to a fixed re-
duced expression with quantum binomial coefficients and exponents lying on
a line segment in NS
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The authors plan to give the proofs of the results described in this article in
a forthcoming paper.
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INTEGRABLE AND WEYL MODULES
FOR QUANTUM AFFINE si,.

VYJAYANTHI CHARI AND ANDREW PRESSLEY

0. INTRODUCTION

Let L be an arbitrary symmetrizable Kac-Moody Lie algebra and Ugy(l) the
corresponding quantized enveloping algebra of t defined over C(g). One can
associate to any dominant integral weight u of t an irreducible integrable
Uy(t)-module L(p). These modules have many interesting properties and are
well understood, [K], [L1].

More generally, given any integral weight ), Kashiwara [K] defined an in-
tegrable Uy(t)-module V™%()\) generated by an extremal vector v). If w is
any element of the Weyl group W of t, then one has V™*()) = V™ (wl).
Further, if X is in the Tits cone, then V™2*{)) = L(wgA), where wg € W is
such that wy) is dominant integral. In the case when X is not in the Tits
cone, the module V™?*(\) is not irreducible and very little is known about
it, although it is known that it admits a crystal basis, [K].

In the case when t is an affine Lie algebra, an integral weight X is not
in the Tits cone if and only if A has level zero. Choose wy € W so that
woA is dominant with respect to the underlying finite-dimensional simple Lie
algebra of t. In as yet unpublished work, Kashiwara proves that V™**(\) =
Wy(woX], where Wy(wo) is an integrable U,(t)-module defined by generators
and relations analogpus to the definition of L(n).

In [CP4], we studied the modules W () further. In particular, we showed
that they have a family W (7r) of non-isomorphic finite-dimensional quotients
which are maximal, in the sense that any otler finite-dimensional quotient is
a proper quotient of some W, (7). In this paper, we show that, if t is the affine
Lie algebra associated to sl and A = m € Z*, the modules W,(7) all have
the same dimension 2™. This is done by showing that the modules W, (=),
under suitable conditions, have a ¢ = 1 limit, which allows us to reduce to
the study of the corresponding problem in the classical case carried out in
[CP4]. The modules W, () have a unique irreducible quotient V,(7), and we
show that these are all the irreducible finite-dimensionzl Uy(t)-modules. In
[CP1], [CP2], a similar classification was obtzined by regarding g as a complex
number and Ugy(t) as an algebra over C; in the present situation, we have to
allow modules defined over finite extensions of C(q).

We are then able to realize the modules W,(m) as the space of invariants of
an action of the Hecke algebra H,, on the tensor product (V@C(g)|t,t7!])®™,
where V is a two-dimensional vector space aver C(g). Again, this is done by
reducing to the caseof ¢ = 1.
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Tn the last section, we indicate how to extend some of the resnlts of this
paper to the general case. We conjecture that the dimension of the modules
Wy () depends only on X, and we give a formula for this dimension.

1. PRELIMINARIES AND SOME IDENTITIES
Let sl; be the complex Lie algebra with basis {z*, 27, h} satisfying
[z*,z7] = h, [h,z%] = 22z%.
Let h = Ch be the Cartan subalgebra of sl,, let o € h* the positive root of
sly, given by a(h) = 2, and set w = /2. Let s : h* — bh* be the simple
reflection given by s(a) = —a.
The extended loop algebra of sl; is the Lie algebra
Le(}) = sl, ® C[t, ¢! & Cd,
with commutator given by
dzet])=rz@t", [zt ,yQt]=][r,y]Q"*
for z,y € sly, 1,5 € Z. The loop algebra L(}) is the subalgebra sly @ C[t, t7!]
of L°(}). Let h* = h & Cd. Define § € (h°)* by
5(b) =0, &(d) = 1.

Extend A € h* to an element of (h°)* by setting A(d) = 0. Set P° = Zw & Z4,
and define P¢ in the ohvions way, We regard s as acting on (he)* hy setting
s(d) =4.

For any z € sly, m € Z, we denote by z,, the element z ® t™ € L¢(}). Set

e =1t@l, & =zF @t

Then, the elements ef, i = 0,1, and d generate L¢(}).

For any Lie algebra a, the universal enveloping algebra of a is denoted by
U(a). We set

U(L(})) = U°, U(L(})=U, U(})=U™
Let U(<) (resp. U(>)) be the subalgebra of U generated by the z;, (resp.
z}) for m € Z. Set UP(<) = U(<) N U and define U*(>) similarly.
Finally, let U(0) be the subalgebra of U generated by the h,, for all m # 0.
We have
Uﬁn — 'U'ﬁn(<)U(b)Uﬁn(>),
U* = U(<)U(0)U(H)U(>).
Now let ¢ be an indeterminate, let K = C(q) be the field of rational

functions in g with complex coefficients, and let A = C[g, ¢™!] be the subring
of Laurent polynomials. For r,m € N, m > r, define

)= L2l =l = 120, (7] =

Then, [7:] €Aforallm >r >0.
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Tet Ug be the quantized enveloping algebra over K associated to 1.6(}).
Thus, Uy is the quotient of the quantum affine algebra obtained by setting
the central generator equal to 1. It follows from [Dr], [B], [J] that U is the
algebra with generators x* (r € Z), K%', h, (r € Z\{0}), D*!, and the
following defining relations:

KK'=K'K=1, DD'=D"'D=1, DK =KD,
Kh, =h.K, KxtK™'=g*2x¥,
DxfD' =q¢'x¥, Dh.D!=qh,,

[h,,h] =0, mnS]—i[%kMy

+ 2+ 4+
xr+lx q xs xr+l q xr xs+l - xs+lxr )
+ —_—
+ — _fb‘r+s  Yr4s
[xr ,Xs] - —1 :
q9—q

where the ¥¥ are determined by equating powers of u in the formal power

series
o0
z,‘/):!: +r K:!:lexp (:I:(q _ q—l) zhisuis) i
s=1

Define the g-divided powers

CS
£(r) _ (%)
(xk) - [7]| ?
foralke Z,r > 0.

Define
> h
Ai(u) = zAtmum = exp( z [z]k k)
m=0

The subalgebras U,, U™, U, (<), U(0) etc., are defined in the obvious
way. Let Ug(0) be the subalgebra of U generated by U(0), K*! and D*".
The following result is a simple corollary of the PBW theorem for U, [B].

Lemma 1.1. U = Uy(<)U(0jU,(>). o

For any invertible element z € Uj and any r € Z, define

T _ z,qr _ z-—lq-—r
] gq-qt
Let U5 be the A-subalgebra of U generated by the K=, (x)®) (k € Z,
r > 0), D*! and [?] (r € Z). Then, [L1], [BCP],

U; = Uj ®a K.
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Nefine W5 (<), Ua(0) and U, (>) in the obvions way. Let 15 (€) be the

A-subalgebra of U, generated by U (0) and the elements K1, D*1, [’: ]

and [?] (r € Z). The following is proved as in Proposition 2.7 in [BCP].

Proposition 1.1. U = U, (<)UA(0)US ())UA(>). a
The next lemma is easily checked.
Lemma 1.2.

(i) There is a unique C-lirear anti-automorphism U of Uy such that
¥(g) = g and

W(K)=K, U(D)=D,
\Il(z;t) = z;t’ "Il(h'r) = —h,,

forallr € Z.
(i) There is a unique K-algebra automorphism ® of U such that

B(xt) =xt,, B(A%(u)) = AF(u).

(i) For 0 # a € K, there ezists a K-algebra automorphism 7, of Uy such
that

Ta(x5) = a’xE, 7u(h)=a"h,, T(K)=K, 1(D)=D,
for r € Z. Moreover,

Ta(A;) = a"A,.

2. THE MODULES W,(m)

In this section, we recall the definition and elementary properties of the
modules Wy()) from [CP4], and state the main theorem of this paper.

Definition 2.1. A Uj-module V; is said to be of type 1 if
V= Do
Aepe
where the weight space
(Voa={veV,: Kv=g"Wy, Dv=g" M}

A Ug-module of type 1 is said to be integrable if the elements xi act locally

nilpotently on V, for all ¥ € Z. The analogous definitions for U¢, U and
Ug“ are clear.

We shall only be interested in modules of type 1 in this paper. It is well
known [L1] that, if m > 0, there is a unique irreducible Uf"-module Vfi*(m),
of dimernsion m + 1, generated by a vector v such that

Kv=q™, ztv=0, (z5)™".v=0.
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Recall [1.2] that, if V, is any integrable slp-mornle, then
dilllK(Vq)n = dimK(Vq)_n,

for all n € Z. Let V{m) denote the (m + 1)-dimensional irreducible represen-
tation of sl,.

Define the following generating series in an indeterminate u with coefficients
in Ug:

X~ (u) = z X (u) = ) x;u™,
Xtu) =) xha™,  Xj(u) =) xmumtt,
m=0 m=0
H(u) = E hau™?,  A*(w) = Y Asgu™ = exp ( E 1}}:}& k)
m=0

Given a power series f in u, we let f, denote the coefficient of »*® in f.

For auy integer m > 0, let Ig{m) be the left ideal in Uj generated by the
elements

xf (keZ), K—q™ D-1,
A (] >m), ApA_, — A, (1 <r <m),
(X{(u)A*(u))rU(O) (re2), (Xy@yA*(w) U@©) (r>1,]s >m).

The idezl I,(m) in U, is defined in the obvious way (by omitting D from the
definition).
Set
Wy(m) = Ug/I5(m) = Ug/Io(m).
Clearly, W, (m) is a left Uj-module and a right U,(0)-module. Further, the
left and right actions of Uy(0) on W,(m) commute. Let w,, denote the image
of 1 in Wy(m). I I,(m,0) (resp. Io(m,0)) is the left ideal in Uy(D) (resp.
U4 (0)) generated by the elements A, (|m| > A(R)) and AymyA_m —Arp)-m
(1 £ m < A(h)), then
Uy(0).wm = Uy(0)/I(m, 0) (resp. Ua(0).wm = Uxs(0)/1a(m,0))

as Uy(0)-modules (resp. as Ua(0)-modules). The U*-modules W(m) are
defined in the analogous way.

Let Uy(+) be the subalgebra of U, generated by the x,=+ for k£ > 0. The
subalgebras U, (+) and U(+) of U, and U, respectively, are defined in the
obvious way. The following proposition was proved in [CP4].

Proposition 2.1. Let m > 1.
(i) We have
Ug(0)/1y(m, D) = KA1, Ag, -+, Am, AL,
Ua(m,0)/Is(m,0) = A[AI,AZ, s A ALY
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as nlgebros over K and A, respectively.

(ii) The U°-module W,o(m) is integrable for all m > 0.

(iii) Wy(m) = Ug(+).wm. In fact, Wy(m) is spannned over K by the
elements

(z‘;)("")(zl—)(”:' . (I,—,,_I)U""‘)Uq(()).u'm,

where r; > 0, ZJ. r; <m.
Analogous results hold for the U-modules W(m). (]

Let P, be the Laurent polynomial ring in m variables with complex coef-
ficients. The symmetric group X,, acts on it in the obvious way; let PE» be
the ring of symnietric Laurent polynomials. In view of Proposition 2.1, we
see that

U, (0)/1,(m,0) X KPE" Up/Ia(m,0) = API™,

m

where KPZE» denotes PE ® K, etc.
Let V be the two-dimensional irreducible sl;-module with basis vg. v, such
that

ztwg =0, hovy=wvy, T .W9=u1,

vt =vn, Ay =—v. -0, =0.

Let L(V) = V ® CJt,t7?] be the L(sly)-module defined in the obvious way.
Let T™(L(V)) be the m-fold tensor power of L(V) and let S™(L(V)) be its
symmetric part. Then, T™(L(V)) is a left U-module and a right P,,-module,
and S™(L(V)) is a left U-module and a right P2»-module. The following
was proved in [CP4].

Theorem 1. As left U-modules and right P=»-modules, we have
W(m) = S™(L(V)).

In particular, W(m) is a free P,;-module of rank 2™. O

Our goal in this paper is to prove an analcgue of this result for the Wy(m).
To do this, we introduce a suitable quantum analogue of S™(L(V)) by using
the Hecke algebra and a certain quantum symmnietrizer.

Definition 2.2. The Hecke algebra H,, is the associative unital algebra over
C(q) generated by elements T; (i = 1,2, ..., m—1) with the following defining
relations:

(T:+ )T - ¢*) =0,

TiTi+1Ti = Ti+1TiTi+1.
T,TJ = TJT, if IZ—]I > 1.
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Set L (V) = (V) ® K. Tt is easily checked that the following formmlas
define an action of Uj on L,(V'):

(2.1) IE (e ®@17) =0, zE.(v: ®F7) = v ® 51,
¢t — ¢t
(22) ‘I’+(u) (U:!: ®tr) = Uy ® ﬁtr,
:!:lt-—l
(2.3) W”@O(vi®t)-—vi®-—Tt%—§T£f.

The m-fold tensor product T™(Ly(V')) is aleft Uz-module (the action being
given by the comultiplication of U,) and a right P,,-mcdule (in the obvious
way). Now, as a vector space over K,

L(V)Pm = Vem g K, ..., 12)],

and £, acts naturally (on the right) on both V®™ and K[t!,...,tZ!] by
permuting the variables. If v € V®™ and f € K[tf',...,tZ}], denote the
action of 0 € ¥,, by v’ and f?, respectively. Let o; be the transposition
(i,i+1) € X,

Proposition 2.2. ([KMS, Section 1.2]) The Hecke algebra H., acts on
Ly(V)®™ on the right, the action of the generators being given as follows

'_q(’vll ® et ®vlm )Ui ® f”. i
(-, @ ®n,)® . t:—t::l
ifti =4, tin = —

—‘U“ ® ®Ulm ®fﬂ|
(1@ ®u, @NTi={ —(@-DEa®  Bv,)®
ift; =tiy,

_q(vh & ®Utm )Ui ® f”. .
(@~ 1) @ ® v,,) ® UL

\ ifti =— tinn =+

Moreover, this action commutes with the left action of U; on Lo(V) and the

right action of KPE;"' i

As is well known, the second and third relations in the definition of H,,
imply that, if 0 = 7;,...0;, is a reduced expression for ¢ € X, so that
N is the length ¢(0), the element T, = T;,...T;, € H,, depends only on
o, and is independent of the choice of its reduced expression. We define the
symmetrizing operator

ti(foi—1

b—tiy

s™: L q(V) - Lq(V)®m
by

S(m)__[T_nF z( g2t

(L2
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Proposition 2.3. As left US-modules and right KPEn madules, we hane
Ly(V)®™ = im(S™)) @ kern(S™).

Proof. Tt is clear from Proposition 2.2 that im(S™) and ker(S™) are sub-
niodules for both the right and left actions.

The following proof is adapted from that of Proposition 1.1 in [KMS]. For
eachi=1,...,m —1, we have a factorizaticn

5 = (Z(—q'z)“”’ml) (1-g7°D),

where ¢’ ranges over ¥,,/{1,0;}. From this and the first of the defining
relations of H,,, it follows that
S™NT; + 1) =0.

In other words, T acts on the right on im(S™) as multiplication by —1. It
follows that S™ acts on im(S™) by multiplication by the scalar

[m]u Z( ) = [m]| H =g e,

o€,
Hence,
S(M)(s(fﬂ) _ q—M(m—l)/Z) =0,
and this implies the proposition. O
As in [KMS], define an ordered basis {um}mez 0of Ly(V) by setting
U9y =’U+®tr, U1.-2r =’U_®tr.
Let u,, ®s -+ ®s u,,, be the image of u,, ® -+ ® u,,, under the projection of
Ly(V)®™ onto Ly(V)®™ /ker(S™). By Proposition 2.3, this can be identified
with an element, which we also denote by u,, ®s - Qs u,,,, in iIm($™),
Proposition 2.4. The set {u,, ®s s u,, : T 2 > Tw} is o basis of
the vector space im(S™). Further, im(S™) is a free KPE™-module on 2™
generators.
Proof. The first statement in proved as in [KMS], Proposition 1.3. As for
the second, for any 0 < s < m, let im(S™), be the subspace spanned by

U, Qg -+ Qs uy,,, Where exactly s of the r; are even. This space is naturally
isomorphic as a right KPZ»-module to KPZs*®m-s, But this module is well-

known to be free of rank (T) O

Let w = ug®g - ®guo. Then, w satisfies the defining relations of W,(m),
so we have a map of left Ug-modules and right KPZE»-modules 1, : Wy(m) —
im(S™) that takes w,, to w. The main theorem of this paper is
Theorem 2. The map 7,, is an isomorphism. In particular, W (m) is a free
KPZ"-module of rank 2™,

The theorem is deduced from the following two lemmas.
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Lemma 2.1. Let m be any marimal ideal o KPE= | and let d be the degree
of the field extension KPE» /m of K. Then,

Wy (m)
Wy(m)m

Lemma 2.2. The map n., is surjective.

dimK =2™d.

We defer the proofs of these lemmas to the next section. Once we have
these two lemmas, the proof of Theorem 2 is completed in exactly the same
way as Theorem 1. We include it here for completeness.

Proof of Theorem 2. Let K be the kernel of 7,,. Since im(S™) is a free,
hence projective, right KPZ»-module by Proposition 2.4, it follows that

W,(m) = im(S™) & K,

as right KPZm-modules. Let m be any maximal ideal in KPZ", It follows
from Lemma 2.1 and Proposition 2.4 that

K/Km=0
as vector spaces over K. Since this holds for all maximal ideals m, Nakayama’s
lemma implies that K = 0, proving the theorem. (]

3. PROOF OF LEMMAS 2.1 AND 2.2

In preparation for the proof of Lemma 2.1, we first show that the modules
in question are finite-dimensional. Recall that a maximal ideal in KPZ»
is defined by an m-tuple of points # = (m, - ,my), with m, # 0, in an
algebraic closure K of K, i.e., it is the kernel of the homomorphism evq :
KPIn K that sends A; — m;. Let Fyr be the smallest subfield of K
containing K and m, -+ ,mm. Clearly, Fy is a finite-rank Uy(0)-module. Set

Wy(m) = Wo(m) vy Fr,
and let wgr = w, ® 1. The U-modules W(x) are defined similarly (with
T € C™),

The following lemuma is immediate from Proposition 2.1.
Lemma 3.1. We have
Uq(O).’UJﬂ- = F1r’UJ1r.

Further, Wy(m) is spanned over Fq by the elements

(23) @)Y (an)

with 3.7 < m.

In particular, dimgW,(7) < oo. O

The modules W,(m) and Wjim), together with their classical analogues,
have the following universal properties.
Proposition 3.1. Let A € Pt,

(1) Let V; be any integrable Ug-module generated by an element v of (Vy)m
satisfying Ug(>).v = 0. Then, V, is a quotient of W,(m).
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(i) lLet V, be a finite-dimensional quotient Ug-madzle of Wo(m) and let
v be the image of w,, in V. Assume that ker(evy).v = 0 for some
7t = (m,  ,7m), where the m; € K. Then, V, is a quotient of Wy(mr).

(iii) Let V, be finite-dimensional U,-module generated by an element v €
(Vo)m and such that U,(>).v = 0 and ker(evy,.v = 0 for some .
Then, V, is ¢ quotient of Wy(m).

Analogous statements hold in the classical case.

Proof. This proposition was proved in [CP4] in the case when # € K™. The
proof in this case is identical, and follows immediately from the defining
relations of Wy(m) and W, (). a

One can now deduce the following theorem, which classifies the irreducible
finite-dimensional representations of U, over K.
Theorem 3. Let 7 = K be as above. Then, W, () has a unique irreducible
quotient U,module V(7). Conversely, any irreducible finite-dimensional U,-
module is isomorphic to Vy(=) for a suitable choice of .

Proof. To prove that W,(7) has a unique irreducible quotient, it suffices to
prove that it has a unique maximal Ug-submodule. For this, it suffices to
prove that, if N is any submodule, then

N Wy(m)m = {0}.
Since Wy(7)m = U,yi0). wx is an irreducible Uy(0)-module, it follows that
NNWy(m)m # {0} = wgx €N,

and hence that N = W,(m). Conversely, if V is any finite-dimensicnal irre-
ducible module, one can show as in [CP1], [CP4] that there exists 0 #v € V;,
such that U,(>).v =0 and that A,.v = 0if 7| > m. This shows that V,, must
be an irreducible module for K[Ay,«++ , Am,AY], and the result follows. O

It follows from the preceding discussion that, to prove Lemma 2.1, we must
show that, if Fr is an extension of K of degree d, then

(3.1) dimg W, (1) = 2™d.

Assume from now on that we have a fixed finite extension F of K of degree
d and an element w € F™ as above. Given 0 # a € K, and 7w € F™ where
K CF, define

o = (amy,a’my, ™).
Given any Ugmodule M, and 0 # a € K, let 7;M be the U,-module

obtained by pulling back M through the automorphism 7, defined in Lemma
1.2. The next lemma is immediate from Proposition 3.1.

Lemma 3.2. We have
TaWo(m) = Wq(m), TaWo(m) = W(m,),

where the first isomorphism is one of Ug-modules and the second is an iso-
morphism of Ug-modules. a
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Let A be the integral closure of A in F. Fix a € A such that w, € A",
By Lemma 3.2, to prove (3.1) it suffices to prove that

dimgWy(m,) = 2™d.

Let L O K be the smallest subfield of F such that 7, € L™ and let A be the
integral closure of A in L. Then, A is free of rank d as an A-module and

L>A®,K
In what follows we write 7 for 7r,. Set
Wa(m) = Ua ®uao) Awrr.

By Lemma 3.1, W, () is finitely-generated as an A-module, and hence as
an A-module. Further,

Wo(m) = Wa(m) @4 K

as vector spaces over K. Note, however, that Wy () is not an Ua-module
in general, since 7;,! need not be in A. However, W, () is a U (+)-module
and
Wy(m) = Wa(m) @a K,
as Ugy(+)-modules.
Set
U1(+) = UA(+) ®a C,.

This is essentially the universal enveloping algebra U(=) of sl; ® C[t], and
hence
W(m) = Wa(m) @4 Cy
is a module for U(+).
Since
dimgWy(7) = rank, Wy (7} = dimeWy(7),

it suffices to prove that

dimcWy(m) = 2™d.
Define elements A, € U(+) in the same way as the elnients A, are defined,
replacing g by 1.
Lemma 3.3. With the above notation, there exists a filtration

Wym)=W1 DWW D . DWg D Wy =0

such that, for each i = 1,...,d, W;/W;,, is generated by a non-zero vector
v; such that

(3.2) gt =0, (z7))™ 1y =0 (r>0),

(3.3) ho.v; = mu;, Apv; = Xipvi (> 0),

where the X;, € C and X\;,, =0 forr > m.
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Proof. Let Wy(w),, be the eigenspace of hg acting on Wy(7r) with eigenvalue

n € Z. Of course,
q(1r @ We(mr),..

We can choose a basis wy,ws, ..., w, say, of Wy(mr)  such that the action
of A;, for i = 1,...,m, is in upper triangular form. Let W; be the U(+)-
submodule of W,y(m) generated by {w;, wit1,...,w}. This gives a filtration
with the stated properties. To see that I = d, note that W, (7)., = Aw,, is
a free A-module of rank d, hence

Wo(m), = Wa(m)m ®a Cy

is a vector space of dimension d. a

Lemma 3.4. Letm =1+3 ., \,u" € C[u] be a polynomial of degree n, and
letm >n. Let Wy (x,m) be the quotient of U(+) by the left ideal generated
by the elements

h—m, A—X, z, (z7)™,

forallr > 0. Then,
dimeW, (m,m) < 2™

Proof. This is exactly the same as the proof given in [CP5, Sections 3 and 6]
that dimcW (7) < 29%6("). We note that the arguments used there only make
use of elements of the subalgebra U(+) of U. O

It follows imniediately from this lemma that
dimcW,(n) < 2™d.

Indeed, each W,;/W,,, in Lemma 3.3 is clearly a quotient of some W, (7, m)
satisfying the conditions of Lemma 3.4, and so has dimension < 2™,

We have now proved that
dimg W,(m) < 2™d.

To prove the reverse inequality, let F be the splitting field of the polynomial
1+ > 7, ma' over F, say

1+ imui = ﬁ(l —a;u)
i=1 i=1

with ay,...,am € F. Let Vr(a;) be a two-dimensional vector space over F
with basis {v,,v_}, define an action of U, on it by setting ¢ = a; in the
formulas in (2.1), (2.2) and (2.3}, and set

W= ® Va(a).

Clearly,
dimgW = 2™dd,
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where d is the degree of F over F. If {fi...., f;} is a basis of F over F, and
if 0 = 3™, then

d
W= 6]9 Ww;,
i=1

where W; is the U,-submodule of W generated by f;i (see [CP3, Proof of
2.5]). Moreover, the vectors f;w satisfy the defining relations of Wy(7r), and
so are quotients of Wy(7r). It follows that

dimg W, () > 2™d.
The proof of Lemma 2.1 is now complete. (]
Turning to Lemma 2.2, set
La(V) =V @Al t7Y).
Clearly, L5 (V) is a Up-module. The map S™ takes Lo(V)®™ into itself;
set
im(S™) = S (m), Sa(m) =S,(m)N LAiV)E™,

We have
(3.4) ST RAK =S, ST ®a CL 2 S™(LV)).

The first isomorphism above is clear; the second requires the basis constructed
in Proposition 2.4. The proof of Proposition 2.3 shows that

La(V)®™ = Sa(m) ® (ker(SI™) N La(V)®™).
Given 7 € F™ such that m; € A, set
S(m) = Sy(m) Bu, F,  Sa(mr) = Sa ®ua A.
Then, S,(7) (resp. Sa(w)) is a Ui-module (resp. U, (+)-module) and
(3.5) Se(m) = Sa(m)®a K
as Ugy(+)-modules. Further, the map 7, : Wy(m) — Sy(m) induces a map
N : Woim) — Sg(m] that takes Wy () into Sa(m).

Set F = F®, C,. Let @ : C[A},--- ,An] — F be the homomorphism
obtained by sending A; to 7; ® 1 and set

S(®) = S™(L(V)) @u F.
Now, in [CP4] we proved that S™(L(V)) is a free C[Ay,-- -, Asn]-module of
rank 2™, hence S(7) has dimension 2™d. Further, [CP4,

W(T) = S(7) = U(+).03™

This shows that the induced map 77 : Wi(w) — Sy(w) is surjective and

hence, using Lemma 2.1, that it is an isomorphism.
Let K,(7) be the kernel of nyr and let K (7) = K,{m) N W, (x). Then,
Ka(7) is free A-module and

dimg Ky(7) = ranks K5 ().
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The previons argnment. shows that.
Ky(m) = Ka(m) ®a C1
is zero. Hence, Ky(7) = 0 and the map 7 is an isomorphism for all 7 € Aan,

But now, by twisting with an automorphism 7, for 0 # a € K, we have a
commutative diagram

Wo(ma) —  Se(ma)
l l
Wo(m) — Sy(m)
for any m € F™, in which the vertical maps are isomorphisms of Ugy(+)-
modules. If a is such that n, € Am, the top horizontal map is also an

isomorphism, hence so is the bottom horizontal map. Thus, W,(m) — S ()
is an isomorphism for all m € F™. It follows from Nakayama’s lemma that

Tm : Wy(m) — ém) is surjective and the preof of Lemma 2.2 is complete. O

4. THE GENERAL CASE: A CONJECTURE

In this section, we indicate to what extent the results of this paper can
be generalized to the higher rank cases, and then state a conjecture in the
general case.

Thus, let } bg a finite-dimensional simple Lie algebra of rank n of type A, D
or E and let } be the corresponding untwisted affine Lie algebra. Given
any dominant integral weight X for g, one can define an integrable Uq(})-
module W,()\) on which the centre acts trivially, [CP4]. These modules have
a family of finite-dimensional quotients Wy(w), where 7 = (7', -+ ,7") and

the 7' € K. The module W,() has a unique irreducible quotient V ()
and one can prove the analogue of Theorem 3. (The proofs of these statements
are the same as in the sl; case.)

We make the following

Conjecture. For any 7 as above,
dimKWq(ﬂ') =My,

where my € N is given by
my = H(mi)’\", m; = dimgW,(i),
=1

and W,() is the finite-dimensional module associated to the n-tuple

(wt,+ -+ 7") with 7/ = {0} if j # i and = = {1}. ]
In the case of sl, the conjecture is established in this paper. It follows

from the results in [C] that W,(i) is in fact an irreducible U,4(})-module and

hence {CP2] the values of the m; are actually known. The results of {C] also

establish the conjecture for all # associated to the fundamental weight \; of
},foralli=1,--- ,n.
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Using the results in [VV], one can show that

dimKWq(ﬂ') > my.

. —AG
It suffices to prove the reverse inequality in the case when the n* € A D for
all i. One can prove exactly as in this paper that the U (+)-modules W, (=)
admit an U, (+)-lattice Wy (7r), so that

dimgWy(7r) = rank, Wy (7, = dimeWy(7r).

Thus, it suffices to prove the conjecture in the classical case, i.e.,

divaV(Tr) =m,,

where m, is defined above.
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Notes on Balanced Categories and
Hopf Algebras

Bernhard Drabant

Introduction

In the article we investigate balanced categories and balanced Hopf algebras.
The close relation of balanced categories, balanced Hopf algebras and ribbon
braids allows the use of diagrammatic morphisms in algebraic calculations for
balanced Hopf algebras and categories and to discuss algebraic applications
in knot theory.

In the first part we consider balanced categories and balanced Hopf algebras
as well as ribbon and sovereign categories and Hopf algebras. Sovereign cate-
gories have been introduced in [9], sovereign Hopf algebras have been studied
in [2]. From the reconstruction theoretical point of view they are the natural
objects in relation with sovereign categories [2].

Strong sovereignity will be introduced and it will be shown that a Hopf
algebra is strong sovereign if and only if it is a ribbon Hopf algebra. This
result immiediately implies the redundancy of the relations S(#) = 6 and
6% = u - S(u) for the twist element of a ribbon Hopf algebra (H, R, 6).

For every quasitriangular bialgebra a corresponding balanced bialgebra will
be constructed by which we easily find an example of a balanced category
related to a category of modules. Another example of a balanced category
is the balanced construction out of a given monoidal category. Braided bal-
anced categories with duality and braided scvereign categories are equivalent
notations [6, 33, 25]. We provide an elementary proof of this fact using re-
sults on balanced categories with duality. Moreover we will show that braided
sovereign categories are exactly the braided categories whose classes of left
and right duality functors are identical. Using traces on balanced categories
with duality we will define balanced Markov-Yang-Baxter operators which
generalize the notion of enhanced Yang-Baxter operators [29]'.

In the second part of the article we study the ribbon braid group and rib-
bon braids. Both are exaniples of balanced categories which are equivalent

!Compare the definition of balanced and tortile Yang-Baxter cperators in [13].
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to the balanced category generated by one object [14, 28]. Similarly as in
the classical case of ordinary braids one derives a generalized Markov Theo-
rem for ribbon braids. The Markov Theorem shows that balanced categories
are closely related to directed ribbon links. In particular the invariants of di-
rected ribbon links are in one-to-one correspondence with maps on the Markov
equivalence classes of ribbon braids. As an example we consider invariants of
ribbon links arising from balancad Markov-Yang-Baxter operators.

Preliminaries

Bi- and Hopf Algebras. Recall [7] that a quasitriangular bialgebra (H, R)
over a commutative ring (or field) k is a bialgebra with a universal R-matrix
R € H ® H obeying the identities

A®(z)=R-A(z)-R™' Vz€H,
(A®idy)(R) = Ry3- Rys, (0.1)
(idy ® AYR) = Ri3- Ri2.

where R;; =Y. I®---® R[ R---® Rz ® - ® L It is well known (see for

instance [15]) that R fulﬁlls the equatlons (e®id)(R) =1 = (id®¢}(R) and
Ry; Ri3 Ras = Ra3 Ry3 Ryp or RJZ Rzz sz = Rzz Rlz st for R = T(R) The
antipode of a quasitriangular Hopf algebra (H, R) is biiective. Furthermore
(S®id)(R) = B! = (id® S71)(R). The inverse of the element u :=mo (S®
id)oT(R)is given by u™! =mo(S'®id)or(R™!) =mo(id® S)o7(R™")
and the following relations hold.

S (z)=u-z-u"'VzeH,
S(u)-u is central in H (0.2)
e(w)=1, Au)=(Ry-R)™"' (u®u).

The axioms of a coquasitriangular bi- or Hopf algebra can be easily obtained
from the definition of quasitriangularity and formally applying categorical
duality?.

Moncidal Categeries. We assume that the (braided) monoidal categories
are strict, that is the tensor product is associative and the tensor product of
an object ¥V with the unit object I is V. Eaclh monoidal category is equivalent
to a strict one by Mac Lane’s Coherence Theorem (21, 22]. We use graphical
calculus in (strict) monoidal categories [24, 15, 31]. Our conventions are
shown in Figure 1.

We will frequently make use of categorical dualization. Suppose a certain
categorical statement can be formulated in a category C, in termis S(C), as
well as in the dual category C, in terms S(C°P). Then we say that the

2Gee the next paragraph for details on categoriczl duality
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X

f: X->Y — @ k:I-W — ®
v w
()Ji XU
gof: X -2 — g f®h — @@
p Y v

A B B A

Upp — A (Yap)™' — X

B A A B

Figure 1: Graphical presentation of a morphism f, a morphism k with unit
object domaine, composition ¢ o f, tensor product f ® g, braiding ¥, and
inverse braiding ¥~

statement S can be dualized in the categorical sense and call (S(C°?)°P) the
dual statement of S(C). Observe that there are statements in certain monoidal
categories which can not be dualized.

Braids and Links. We discuss topological structures of (ribbon) braids
and links in the setting of piecewise linear topology [27]. In particular we
freely use notions like continuous map, regular neighborhood, orientation,
isotopy, etc. within this piecewise linear framework. We suppose familiarity
with elementary knot theory, and we refer henceforth to all the excellent
articles on the subject from which (1, 3, 9, 13, 15, 19, 20, 26, 28, 31, 33] is
only a small excerpt. In particular the categories of graphs and tangles were
invented by Yetter [32], Freyd and Yetter [8, 9], and Turaev [30]. The idea
to describe the categories of graphs and tangles via generators and relations
is mainly due to Yetter [32] and Turaev [30].

Acknowledgements: I thank Yuri Bespalov, Shahn Majid, Susan Mont-
gomery and Jozef Przytycki for valuable discussions.

1 Balanced Hopf Algebras

Let us briefly recall the definition of balanced and ribbon Hopf algebras (see
for instance 26, 15]).

DEFINITION 1.1 A balanced bialgebra (H, R, 8) is a quasitriangular bialgebra
with an invertible, central element 8 € H such that A(f) = (Ra1-R)™'-(6®86)
and £(8) = 1. If H is a balanced Hopf algebra and the identity S(8) = 8 holds
then (H.R,0) is called a ribbon Hopf algebra.

Cobalenced bialgelras and coribbon Hopf algebras are the dual analogues of
balanced bialgebras and ribbon Hopf algebras respectively.
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In the following definition the notion of sovereign Hopf algebra is due to [2].

DEFINITION 1.2 A sovereign Hopf algebra (H,®) is a Hopf algebra with a
group like element ® € H fulfilling the identity S*(z) = ®~'-z - ® for all
z € H. If (H,R,®) is a quasitriangular sovereign Hopf algebra we call it
strong sovereign if 2 = S(u) - u~'.

Dually, a (strong) cosovereign Hopf algebra (H, $) is a (coquasitrangular)
Hopf algebra with a character ¢ : H — k such that S% = ¢! *id ¢ (and
& = (o S) x u~!) where x is the convolution product.

One easily verifies that the antipode S of a (co-)sovereign Hopf algebra has an
inverse ™! =& - 5(,)- ®~! and S~ = ¢ S* ¢! respectively. Actually, this
is equivalent to the definition of (co-)sovereign Hopf algebras in Definition
1.2.

Tueorem 1.3 1. (H.R,0) is c balanced Hopf algebra if and only if (H,R,®)
is a quasitriangular sovereign Hopf algebra. The elements 8 and ¢ are
related by 6 - ® = S(u).

2. (H,R,8) is a ribbon Hopf algebra if end only if (H, R, ®) is a strong
sovereign Hopf algebra.

PROOF. The first part of Theorem 1.3 has been proven in [2] for the corre-
sponding dual statement of cobalanced and coquasitriangular Hopf algebras.

We only have to verify the second part of the theorem. Observe that for
any sovereign Hopf algebra

&' S(u) =S3(u)- &' = S(u)- 0. (1.1)
If in addition H is strong sovereign then

S(6) = S(S(u)- @7') = S(@7" - S(u))
=S5(®-u)=S(u)-5(P)=S(u)-o7'=6

where the definition of § has been used in the first equation, relation (1.1)
in the second identity, the assumption ®* = S(u) - u™! in the third and
S(®) = ®~! in the fifth equation. Conversely, if (H, R, ) is a ribbon Hopf
algebra we have to show that ® := §~!-S(u) cbeys the identity ®* = S(u)-u~'.
By assumption 6 = 5(6). Therefore S(®-S(z!)) = ¢-S(u™'). From the first
statement of the theorem we know that ® is a sovereign group like element.
Then we conclude S(®-S(u~!)) = &-S(u~!) & S(®)-S%iu™) =&-S(u™!) &
1.yt =% -Su')e ® =u"- S(u) = S(u) - u”!. Hence, (H R, ®) is
strong sovereign Hopf algebra. [ ]
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A corresponding dual result of Theorem 1.3 holds for coguasitriangular Hopf
algebras and cobalanced and cosovereign structures. From Theorem 1.3 we
derive the following corollary which says that the conditions S(f) = 6 and
6% = u - S(u) of the twist element § of a ribbon Hopf algebra are equivalent.

CororLary 1.4 Suppose that (H, R,0) is a balanced Hopf algebra. Then
(H,R,9) is ribbon if and only if §2 = u - S(u).

PROOF. From Theorem 1.3 we know that (H, R, ) is ribbon if and only if
(H,R,67" - S(u)) is strong sovereign if and only if (87! S(u))? = S(u) - u~!
iff 62 = S(u) - u. (]

The next proposition describes the construction of a balanced bialgebra out
of a given quasitriangular bialgebra. This process is a straightforward gener-
alization of the construction in [26] which associates to any quasitriangular
Hopf algebra a ribbon Hopf algebra.

Prorosition 1.5 Suppose that H is a quasitriangular bialgebra. Then the
Laurent polynomial algebra H[0.07"] is a balanced bialgebra with Ay := Ay,
A(g:!:l) = (Rz] - R):Fl . (0*1 ®0:H), E\H ‘= EH, and &.(0:!:1) =1.

PROOF. We follow the lines of [26]. Therefore we only sketch the most

important arguments. H[0,07'] is canonically an algebra. The bialgebra
structure on H[0,67'] = @, H, is given by (') = 1 and A(*') =
(Ra1 - R)F' - (6*' ® 6%'). To prove coassociativity the identity

(I®Rn-R)-({d®A)(Ry - R) = (R - R® 1) (A®id)(Ra - R) (1.2)

needs to be verified in particular. If H were a quasitriangular Hopf algebra
(1.2) could be conveniently derived with the help of (0.2). To prove (1.2) for
a quasitriangular bialgebra H we proceed as follows. Using (0.1) we obtain

(Ra1-R)-Afa)=A(a)-(Ry-R) YaeH. (1.3)
We transform the left and right hand side of (1.2) with the help of {0.1).
(I®Ry-R)-(id® A)(Ra1-R) = R32 - Rps- Ra1 - Ry - Riz - Rua.

. 1.4
(Rai-R®T)- (A®id)(Ra1-R) = Ryp - Ra1 - Ri3- Rz - Rar - Rys. (4
Furthermore (0.1) and (1.3) yield

Raz- Ry1 - Ry - Rz = (T ® id)(Ri3 - Ri2) - (1 ®1id)(I® Ry - R) (1.5)

= (7 ®id)((I® Re; - R) - (Ri3 - R12)) = Ra1 - Ri3- Ras - Rar -

Inserting (1.5) into (1.4) yields (1.2).
It is easy to show that R is an R-matrix for H[6,87']. Then by definition
of A(8) it follows that H[6,67!] is a balanced bialgebra. (]

REMARK 1 If H is a quasitriangular Hopf algebra then H(8) := H[9]/(8 —
u-5(u)) is a ribbon Hopf algebra with Sj := Sy and ribbon twist ¢ [26]. H
is a quasitriangular sub-bialgebra of H[6,8~!] and H (8) respectively.
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2 Balanced and Sovereign Categories

Braided monoidal categories were introduced in [10, 12]. The definition of a
twist in a braided category was given in [28]. Balanced categories have been
studied in [14, 28, 9] and sovereign categories in [6, 33, 25)].

We recall the definition of (adjoint) duality in a menoidal category [10,
12, 14, 16]%. Suppose that (C,®) is a monoidal category. An cbject X
in C has a left dual *X if there exist morphisms evy : *X ® X — I and
coevy : I — X ® *X such that

(idx ® evx: o (cOeVX ®idx) =idy,

2.1
(er ®idmx)0(idmx ®COer) =id.x. ( )

The pair (ev,coev) is an adjunction between the objects *X and X [11].
If every object in C has a left dual then C is a category with left duality.
Similar definitions yield the notion of right duality. The left (or right) dual
is unique up to canonical isomorphism. The contravariant duality functor
*(-):C—Cisgiven by *(X)="X and *(f) : Y = "X, where f: X = Y
and *(f} := (evy ®id-x) o (idy ® f ® id-x)} o (idsy ® coevy). Observe that
*(=) : (C,®) — (C°P,®"P) is a monoidal functor which is unique up to
monoidal isomorphism. Similarly the right duality functor (-)* : ¢ — C
will be defined. Left and right duality functors are not isomorphic in general.
Heneeforth we use the graphical presentation cvy (=t :*X ® X — T and
coevy :=: I = X ®*X, and similarly for the right duals.

In a braided monoidal category with left duality (ev, coev) right duality can
be defined by evly =evyoWUx .x and coevly = Uyl ocoevy for X € Ob(C)*.

DEFINITION 2.1 The category (C,®,¥, O) is called baianced if (C,®,¥) is
braided and O : id¢ & id¢ is a netural isomorphism which obeys the identities

Oxgy = UrxoV¥yyo(Ox ®Oy) (2.2)

for all X, Y € Ob(C). A balanced category C with left duality (ev,coev) (and
hence right duality) is called ribbon category if in addition ©-x = Ox) for
all X € Ob(C).

Naturality of © and (2.2) imply that Oy = idg in any balanced category
(c,0).

REMARK 2 A balanced (ribbon) functor ' : C — D is a braided monoidal
functor which preserves the twist, F(0%) = e?( x) (and is compatible with
duality).

3Adjoint duality may not be conused with the categorical duality discussed in the
Introduction.
1A category with right and left duality is called autonomous.
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Next we are going to discuss the construction of a balanced category out of any
nionoidal category. This construction interpolates the niore general center
construction [23, 13] which assigns to every monoidal category a braided
category Z(C), and the more special double construction [15] which assigns
to every category with left duality a ribbon category D(C).

DEFINITION 2.2 Let C be a monoidal category. Then the category B(C) is
defined as follows.

1. Otbjects are tuples (V,vy,_,0v) such that

(¢) V is an object in C,
) vy V&(-)> (-1®V is a natural isomerphism in C.

(¢) Ov : V =V is an automorphism in C

and the identities ’(/)V,X®y = (ldx ®’(/)V‘y) o (’(/)V'X ® ldy) and (ldx ®0V) o
Yvx =Yvx o(fv ®idx) hold for all objects X, Y in C.

2. Morphisms f : (V,¢y.—,0y) = (W, 9w _,0w) are morphisms f : V —
W in C such that (ldx ®f)0’(/)v,x = ’(/)W,Xo(f®idx) and f00V = 0“/0f
for all objects X inC.

Note that B(C) is bigger than D(C). For instance, with (Vv _,0y) also
(V.yv—,0%) and (V ¢y, X - By) are objects of B(C) for any n € N and
AE Aut( Ic)

The next proposition states that the category B(C) is balanced. Therefore
this construction provides a balanced category B(C) for any monoidal category

C.

Prorosition 2.3 If (C.®, 1) is a monoidal category then B(C) is a balanced
category with

1. unit object Ip) := (1,45 = id(), 05 = idy),

2. tensor p'I‘Od’LLCt (V "/)V.—: 0V) ® (VV, '(/)“/,._, GPV) = (V QR W, ’(/)V@;pv,.., 0V®W)
where Bygw = (By @ Ow) o hwy oYvw, and Yyvew.x := (Yv x ®idw)o
(idy ® ¢Yw.x) for any object X in C,

3. bmiding "II(V‘(IIV.—.9V).(“’,¢W.—'9w) = 1/)v,w,
4. twist e(v,d,v__‘gv) = 0V-

PROOF. The proof is a straightforward specialization/generalization of the
corresponding proofs of the center and double constructions (23, 13, 17] re-
spectively. ]
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For every monoidal category C there exists a monoidal functor Il¢ : B(C) —

C defined by (V,9y_,08y) — V and f — f [17]. The functor Ii¢ is not

balanced in general. If FF : C; — C; is a balanced functor of balanced

categories then B(F) : C; — B(C;) with B(F)(V) := (V, \IIF(V) o GF(V))

B(F)(f) := F(f) is a balanced functor, and it holds llg, o B(F) = F. If

¢ £ ¢, £ €3 is a sequence of balanced functors then B(G)oF = B(GoF).
Similarly as in [17] one proves the next proposition.

Prorosition 2.4 If C is a monoidal category, B is a balanced category and
F : B — C is a (strict) monoidal functor which is bijective on the objects
and surjective on the morphisms, then there exists a unique balanced functor
B(F) : B — B(C) such that ' = llgc o B(+'). In particular the balanced
functor B(idg) : B — B(B) is unique such that Ilg o B(idg) = idg. =

In the following we will consider balanced categories with duality. In partic-
ular we will discuss their relation to so-called sovereign categories.

Prorosition 2.5 Let (C,0) be ¢ balanced category with left duality (ev, coev).
Then for every object X in C the inverse (Ox)~' is given by

(0x)~' = J \2 (23)

The category C is ribbon if and only if

(ex)%= & (24)

PROOF. We use similar techniques as for instance in [15]. Since @ is functorial
and fulfills (2.2) and Oy = idy it holds

for every object X in C.

coevy =coevxy 00O = Oxg-x ocoevy =(Ox ® O-x)o ¥ o Vocoevy.
(2.5)

Applying (2.1) one obtains idx = (idx ®evx)o ((Ox ® O-x)o¥oVocoevy ®
id x) from which (2.3) can be derived using functoriality of the braiding .
Now suppose that C is ribbon, then *Ox = O.x. Therefore (id ® G-x) o
coevy = (Ox @ id) > coevy), and we can apply (©x)~! o | on both sides of
(2.3) to get (2.4). Conversely, if (2.4) holds we apply | 0@x on both sides of
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(2.4). Taking into account that {2.3) holds in particular for ribbon categories
we obtain
J

) C -

Using (2.1) and functoriality of the braiding one immediately derives from
(2.6) the identity *Ox = O-x. Therefore (C, ) is a ribbon category. ]

Prorosition 2.6 IfC is a balanced category with left duality (ev,coev) then

evy =evx o VUya.x 0(Ox ®id-x), coevly = (O ®idy)o Uy -x ccoevy.
(2.7)

defines a right duality on C. Conversely, if (ev, coev) is a right duality on C
then

evy =evy o Uy« x0(Ox- ®idx), coevly = (Ox ®idx+) o Ux« x 0 coevy .
(2.8)

is a left duality. These structures are inverse to each other in the following
sense. Suppose thai (ev,coev) is a left duality of the balanced category C.
Then ((ev")!, (coev™)!) = (ev, coev).

PROOF. With the help of (2.3) one easily verifies that (ev”, coev”) according
to (2.7) defines a right duality on C.

By definition of (ev",coev”) we have X* = *X where *X is the left dual
w. . t. (ev,coev). Then we use (2.8), (2.7) and (2.3) to derive

(eVT)lX =9VS(°‘I/X‘X o (Ox« ®idx)
—eVXO‘IJO(ex®eX oV

‘ @\24 (2.9)
- —evyx

Similarly we derive {coev")}; = coev. [
Next we recall the definition of sovereign categories (see for instance [33, 25].

These are categories whose left and right duality are isomorphic to each other.

DEFINITION 2.7 Let C be a monoidal category with left and right duality. If
the left and right duality functors of C are monoidally isomorphic through

()= & *(s), then \C, ) is calied sovereign category.
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It will be shown in Theorem 2.10 (see also [6, 33, 25]) that balanced categories
with duality are equivalent to braided sovereign categories. Propositions 2.8
and 2.9 are preliminary steps.

Prorosition 2.8 If(C, Q) is a balanced category with duality and if the right
dual structure is given by (2.7) then the left duality functor on C coincides
monoidelly with the right duality functor. This implies that id : (-=)* ——
*(—) is ¢ natural monoidal isomorphism, and therefore (C.id-(_y) is a braided
sovereign category.

PROOF. To verify the proposition we have to prove that ((—)*, pg = idg,p X'y)
and ((—), Ay = idy, A X'y) coincide. The natural morphisms Ax y and pxy
are given by

Axy = (eVng ® idsy ® idtx) o (id-(xgy) ® (idx ® coevy @ idxx) o COeVX)
pxy = (idy- @ idx- ® eviygy) 0 ((idy» ® coevy ® idy) © coevy ® id(xgy)-)
(2.10)

By construction X* = "X for all objects X inC. For any morphism f : X —» Y
we obtain

[7=(1d®ev") o (ild® f ®id) o (coev” ®@id) = é = &%‘% =°f

(2.11)

where we used definition (2.7), naturality of © and the definition of *f in the
second equation of {2.11). In the third identity we use functoriality of the
braiding ¥ and (2.1). Eventually, (2.3) yields the final identity. Therefore
the functors (—)* and *(—) coincide.

It remains to show that pxy = Axy for all objects X.Y in C. We will use
the notation

(X®Y) X Y
evxgy = [ (2.12)

Then we use (2.7) to rewrite pyy, and with the help of (2.2) and (2.5) we
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obtain
(X QY)
Pxy = = ag
S
er tX \.—/

In particular this implies that (C,id(-)-) is a braided sovereign category. =
The converse of Proposition 2.8 holds as well.
Prorosition 2.9 Let (C, ) be a braided sovereign category and define

Ox = (idx ® evy) o (Tx.x ®px') o (idx ® coevx) VY X € Ob(C) (2.13)

where (ev,coev) and (ev’,coev’) are the left and right duality respectively.
Then (C, Q) is a balanced category with duality.

PROOF. We only have to prove that the above defined O is a twist of a
balanced category. It is rather simple to show that @y is an isomorphism.
For any morphism f : X — Y we have evy o (f ® id) = ev/y 0 (ld ® f*),
il Ogo;,l = go;(l o*f and (id ® *f)ocoevy = (f ®id)ocoevy. Hence Gy o f =
foBOx. If ®,1i€{1,2}, are suitable morphisms then the identity

L\L\\, = L@?Lf@r (2.14)

, P4

Q
holds. Since ¢ is monoidal, i.e. pxgy = Yy ® x. the identity (2.2) easily
follows from (2.13) and (2.14) =

The first part of the following theorem has been proven in [6, 33] and refor-
mulated in [25]. Using the previous results we will provide an elementary
proof of that.

Tueorem 2.10 Suppose that C is a braided category with duality. Then C
is balanced if and only if C is sovereign. In this case there exists for any
left duality a right duality such that the sovereign structure coincides with the
identical natural transformation.
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PROOF. If C is balanced with duality then by Proposition 2.8 C is braided
sovereign. Conversely, Proposition 2.9 states that there exists a twist on
every braided sovereign category. Then we use again Proposition 2.8 to verify
that every sovereign structure ¢ on C has the form ¢ = idod = § where
8 :(=)* = (=) is the canonical monoidal isomorphism of the functors (—)*
and (—)*. =

Therefore the twist of a balanced category with duality corresponds in a very
natural way to sovereign structures which are identities of a given duality
functor.

Cororrary 2.11 Let C be a braided cateqory with duality. Then C is sovereign
if and only if its class of left duality functors coincides monoidally with
its class of right duality functors. The twist on C is given by Oy :=
(idv ® ev},) o (Uyy ® id+y) o (idy ® coevy) where (ev, coev) and (ev’, coev’)
are the respective left and right dual structure of the duality functor. ]

Every sovereign category admits a trace [25]. In particular every balanced
category C with (left) duality has a trace map tr 4 g.c : Hom¢(AQC, B®C) —
Hom¢(A, B) on its Hom-sets, defined by

trA,B;C(u) = (215)

B

Standard methods [20, 25] will be used to prove the following identities.
A trype(uo(fRide)) =trape(u)o f,
B. trap.c((¢g ®ide) ou) = gotrap.c(u),
C. trape(wo (ida ® b)) = trapc((idp ® h) o w),

D. traga,pesic(k®1) = k®tra p.c(l),

=

. traB.ogn(v) = trase(trage sec:n(v))

whereu: ARC - BRC,v: ARC®D —-BC®D,w: AQRC — BR(/,
f:A>A g¢g:B->B, h:C">C,k:A->B,l:AC—->B®C. If
g : C — C we denote the trace try r.c(q) either by tre(g) or tr(g) if it is clear
from the context.
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In [13, 14] balanced Yang-Baxter operators have been defined. A balanced
Yang-Bsaxter operator (fi, ) ona functor F': YV — C from a category V to a
(strict) monoidal category C is a pair of natural isomorphisms R: ®0(F F)>
@Po(F, F)andp : F %S F obeying the identities (R®1d»o(1d®R)0(R®1d)
(i[d® R)o (R®id) ¢ (id ® R) and R*! o (¢ ® id) = (id ® ) 0 R\
We will define balanced Markov-Yang-Baxter operators or MYB operators.
They are generalizations of the enhanced Yang-Baxter operators defined in

29].

DEFINITION 2.12 Let C be a balanced category with duclity and the trace on
C be defined as in (2.15). Then the tuple R = (R, q, i is called a balanced
Markov-Yang-Bazter operator if (R @) is e balanced Yang-Baxter operator
on a functor F:V — C, and

1. p: F 3 F is a natural endomorphism,
2 pop=ypopand Ro(p@p)=(ep)ok,
3. trpy Fv).F(V) (ﬁﬁl‘, o{py ® I"'V)) = (P‘:!,:l oy, for all objects V in V.

REMARK 3 1. If C is a ribbon category and F' : V — C a functor then one
uses (2.4) to show that (¥€ o (F, F), 80 F,idf) is a balanced Markov-Yang-
Baxter operator on F.

2. A Markov-Yang-Baxter operator or enhanced Yang-Baxter operator R =
(R, ) on a functor F [29] is a balanced Markov-Yang-Baxter operator on
F' for which ¢ = idp. Then we can define balanced Markov-Yang-Baxter
operators in terms of Markov-Yang-Baxter operators. (R, ¢, ) is a balanced
MYB operator if and only if (R, ) is an MYB operator and there exists an
automorphism ¢ of F' obeying the identities (¢ ®id) o RE!' = R*lo(idy @ )
and @ o = po . In this case R = (¢! ®id) o R.

Given a balanced Yang-Baxter operator R = (ﬁ,cp) on an object V in C.
The group GF C Aut(V®") is defined by the generators ¢; := idy ® --- ®
1.

idy ®§®idv ® - --®idy and ¢_; =idy®---Ridy ®®idy ® --- ®idy for
-1 2. n. 1. i—1. i+l n.
ie{l,....,n—1}andje€ {1,...,n}.

Prorosition 2.13 If R = (ﬁ, . 1) is a baianced Markov-Yang-Bazer oper-
ator on an object V in C then

tr(cobo u®) =tr(boco pu®"),

2.16
tr(¢2! o ¥ o (b®idy) o u®**1) = tr(bo u®) (2.16)

for any b,c € GE.



76 Bernhard Drabant

PROOF. The first identity of (2.16) follows from property (C) of the trace
tr and Definition 2.12.2 since b, c € G? by assumption. To verify the second
identity of (2.16) we use throughout the commutativity of g according to
Definition 2.12.2. Then we apply successively the Properties (C), (E), (D),
(D) and Definition 2.12.3 to obtain the following series of equations.

tr (62 o 9T' o (b®idy) o u® 1)

=tr ((bo 62 o u® ®idy) o (idyen ® p) o F")
=tr(tryen vouy (04 0(1® ® idy) @ idy)o(idys. @ @ m)orsF'))
=tr (b o ¢:l o (u® ' ®idy) otrysn vouv ((idv%—n @uep)o ,‘/)::l))
=tr(bo #E! o (u® ' @ idy) o (idyen-t @ tryyy (e ® p) 0 ')

=tr (b o ¢:l o (”&.-1 ®idy) o (idye._ ® o p,))

=tr(bo p,®")

Examples

The categories of modules and comodules over certain types of bi- and Hopf
algebras over a field k are a source of the different kinds of categories discussed
above. In the simplest case it is known that the category of modules (or
comodules) over a bialgebra is monoidal.

Let H-mod be the category of modules over a bi- or Hopf algebra H and by
H-comod its comodule category. The subscript (.)s denotes the corresponding
finite-dimensional sub-categories. The following results are either well known
or may be derived straightforwardly.

Suppose that H is a bialgebra. Then

1. (H, R) is a quasitriangular bialgebra if and only if H-mod is braided.
2. H is a balanced bialgebra if and only if H-mod is balanced.

3. H is a Hopf algebra with bijective antipode if and only if H-comody
has left and right duality. If S? = idy then the induced duality functors
are involutive, i.e. (V*)* =V and (f*)* = f. If H is finite-dimensional
then involutivity of the duality functor (—)* implies S2 = idy.

4. If H is a ribbon Hopf algebra then H-mody is a ribbon category. If H
is a finite-dimensional quasitriangular Hopf algebra and H-mody is a
rikbon category then H is a ribbon Hopf algebra.

ot

If H is a Hopf algebra with bijective antipode, then H is a cosovereign
Hopf algebra il aud ouly if H-comody is a sovereigu calegory.
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Next we prove the equivalence of the balanced categories D(H)[#*!]-mod
and B(H-mod), where H is a finite-dimensional Hopf algebra with bijective
antipode and D(H) is its quantum double [7]. This result extends the corre-
sponding outcomes in [23] and [17] on the center construction and the double
construction respectively.

Prorosition 2.14 Let H be a finite-dimensional Hopf algebra with bijective
antipode, and denote by D(H) the quantum double of H. Then the categories
D(H)[0,07!]-mod and B(H-mod) are equivalent balanced categories.

PROOF. The quantum double D(H) is a quasitriangular Hopf algebra, and
thercefore the categories D(H )[9,0”1] mod and B(H mod) arc balanced.

Given a quasitriangular bialgebra B we define the category D(B) with ob-
jects (V.6y) where V is a left B-module and 8y : V — V is a B-module
isomorphism. The morphisms f : (V,8y) — (W,6y ) are B-module mor-
phisms such that fo 8y = 6y o f. Then every object (V,8y) becomes a
B[8,6' -module through 8 &> v := 6y(v) for v € V. Conversely for every
B[8,6~' -module (V.>) the morphism 6y := 6 &> (=) renders (V,8y) an ob-
ject in D(B). Then any morphism in one of the categories is morphism in
the other category, and one easily verifies that the categories B[f, 8 ']-mod
and D(B) are isomorphic.

With the help of this fact one can prove the propoesition using exactly the
same techniques as in the proof of Theorem 5.4.1.(iii) in [17]. We will not go
into details. [ ]

3 Ribbon Braids and Ribbon Links

In this section we consider ribbon braids and ribbon links. In the first sub-
section we discuss the algebraic aspects of ribbon braid groups. In the second
subsection we discuss ribbon braids and ribbon links and a ribbon version

of the Markov Theorem which implies a one-to-one correspondence of ribbon
links and certain equivalence classes of ribbon braids.

Ribbon Braid Group
Ribbon braid groups are defined as follows (compare [14]).

DEFINITION 3.1 Let n € N. Then the group RB,, is the group generated by
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the elements {¢;}7, and {c]}""l and the relations

G k=g Vike{l,....n—1}, j—k[>1,
GGl G =G GGy YIi€E{l,... ,n—2},

Gi-bj=¢;j- i,

i G =G - Pit1,

Gir1 "G =G " Pi,

di-Sj=¢gi-¢i for|lj—i|>lorj=i+1.

(3.1)

The group RB,, will be called the n.th ribbon braid group. For n = 0 we define
RRO = {1 }

Because RB,, is canonically embedded in RB,, for m > n the direct limit of
all RB,, ezists and is called the ribbon braid group RBe.

Lemma 3.2 Every element b € RB,, can be written in the form b= ¢ -. . .-
P -w(cfl) wherem; € Z for aili € {1,... .n} and w is a word in (cfl);‘;ll
]

The ribbon braid group RB, is a semidirect product (see also [14]).

Prorosition 3.3 The n.th ribbon braid group is isomorphic to the semidirect
product 2" B, where the action o : B, — Aut(Z") is the canonical action of
the underlying symmetric group on the n-tupies (z,. .. ,z,) € Z"*. Euxplicitely,
the group isomorphism x : RB, — Z", X B, is giver. by x(¢:) = (e;, I),
x(s;) = 0,¢;), wheree; =(0,...,1,...,0) is the canonical i.th basis element
inZ"™.

PROOF. Using the defining relations (3.1) of RB,, one easily verifies that x
is a group morphism. The inverse of x is given by x™' : Z", x B, — RB,,
xNz.<) := g1(2) - g2(s) where g1 : Z" — RB,, gi1(e:) = ¢ and g2 : B, —
RB,, 92((1') = Gj. »

The usual braid group B, (or on B,) has a linear ordering which is compatible
with right multiplication. It is defined as follows [4, 5).
An element b € B, is said to be positive/neutral/negative if there exists

some k € {1,...,n — 1} and a word w in the generators {}77 such that
respectively
W(CL, cl:::-:l’ A cr:f:—ll) (pOSitiVG)
b= w(cHl i) (neutral) (3.2)
w(g! ’ck+l’ .- ’cr:f—ll) (negative)

Then the linear ordering “<” is defined as b < ¥ if b’ - b~! is positive. It is
compatible with right multiplication.
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Cororrary 3.4 The ribbon braid group RB,, has a linear ordering “<X” which
is compatible with right multiplication. It is defined by (z,b) < (2',}) if and
only if ooz <Y 2 and b < V.

PROOF. 1) Suppose (Z],bl) < (Zz,bz) < (Z’;,b’;) Then Zl 21 < El 20; <
Zi 234 and by < by < bs. Therefore (Z[, b[) < (Zg, bg) 2) If (Z], b[) < (Zz, bz)
then obviously (Z],b]) # (Zz,bz) and (Zz,bz)-x(zl,bl). 3) Let (Z[,b[) <
(Zz, bz), and (Zg, b’;) € RBn be arbitrary. Then (Zj, b]) - (Zg, b’;) = (Zj - (b] g
23), bj-bs), and 30, (z1- (b1 23))s = 30, 21+ Y, (b1 Z3)i = 30,215+ ), 23 <
Zi zZ,i+Zi 23: = Zi(z2-(b2(>zs)),-. Hence (Z[, bl) (Zg, bg) = (Zz, bz) (Zg, bg)
[}

Lemma 3.5 RB,, is torsionfree, i.e. the order of every element g # 1 is
infinite. »

REMARK 4 The ribbon braid group RB, is a strict balanced category in
a canonical way. The objects are the non-negative integers n € Ny, and 0
is the unit object. The morphisms b : n — n are the elements b € RB,.
If m # n then hom(n,m) := . Composition in the category is the group
multiplication. The tensor product is given by b ® & = b - sh!*l(¥'), where
sh: RB, — RBy is the canonical shift homomorphism assigning ¢, — ¢4,
@i — ¢ir1, and |b] is the minimal integer such that b € RBy;. The braiding
VUpm : n@m — m @ n and the twist @, : n — n will be defined using
¥y =0y, Op := ¢ and the defining relaticns of a balanced category. Thus
the category RB, is equivalent to the free balanced category generated by
one object [14].

We recall the definition of the braid groups By ,, of type B. It turns out that
the ribbon braid group RB, is & certain quotient of By .

DEFINITION 3.6 Denote by B, , the n.th braid group of type B. This is the

n—1

group generated by {¢;}*~ and ¢, obeying the relations®

Grsk=¢-s Vike{l,...,n—1}, [j—k|l>1,
G Sl S =Gl -Si-Gi+1 Yi€{l,...,n—2},
SL-g1-S1-P1=2901-61-¢1-61,
dr-ci=g- - Vi>1.

(3.3)

Define ¢ :=Gj—1-++S1-¢1 -5 " - "Cf.ll foralije{2,... n}. The direct limit
of the groups (B ,)ren, will be denoted by B .

51t can be shown that By ., is isomorphic to the semidirect product {xy,... .x,) % B,
where {z),... ,x,) is the frec group generated by n generators (sce c.g. [18]).
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Prorosition 3.7 There exists ¢ unigue group epimorphism an : B, —
RB, such that PE () = G and P (¢;) = ¢; foralli € {1,... ,n -1} and
j€{l,... .n}. Explicitly

RByu=Bin/{s-¢i-s'=¢" ¢i-q.i€{l,...,n-1}) . (3-4)
PROOF. Obviously the mapping

p:Bni=Bia/i-¢i-g' =6 -¢i-u, i€{l,...,n—1}) - RB.

which is given by p(¢;) = ¢ and p(¢;) = ¢; is a group morphism. Conversely,
the generators {¢}; in m fulfill the braid identities corresponding to the
first and second equation of (3.1). By definition of B, ,, it holds ¢, -¢; = ¢;- ¢,
¥ j > 1. Using the identities (in By,) ¢1-61 = G- ¢s, d1-61 - - -6 =
Gi-d1-G -1 and ¢iyy = 6! - & - G the remaining identities in (3.1) can be
proven for the generators {;}; and {¢;}; in By . Since RB, is universal as
semidirect product there is a group morphism q : RB,, — B}, with q(;) = ¢,
q(;) = ¢;, implying that q = p~' and therefore RB,, & B, . ]

Ribbon Braids and Ribbon Links

We will use the notations and results of {26, 31, 14, 33] to define ribbon
braids and related topological constructions. We will not go into details and
assunie that the reader is adequately familiar with this matter. We denote
the category of ribbon tangles by R-Tang. In contrast to [26, 31] we use the
“up-to-down” composition for tangles in R-Tang.

DEFINITION 3.8 An oriented directed ribbon n-braid is an oriented downward
directed (n,n)-ribbon tangle Q m R-Tang whose cores form an ordinary n-
braid. Two ribbon braids are equivalent if there is an isotopy of ribbon tangles
which is an isotopy of braids of the corresponding cores of the ribbon braids.

REMARK 5 Ribbon links and ribbon tangles can be described equivalently
by so-called double links and double tangles and their corresponding double
link diagrams and double tangle diagrams [14, 28]. A double link (or double
tangle) £ will be denoted by its two components, £ = (L, L"). We will
henceforth use either the description in terms of ribbon links/tangles or double
links/tangles depending on which is the most suitableour purposes.

The above definition and the results of [26, 31, 14] imply that the category
R-Braid is a balanced subcategory of R-Tang generated by one object. The
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generate the morphisms of R-Braid monoidally. Moreover, for given n € N
the ribbon n-braids R-Braid, are a group generated by (oj);-:ll and ()%,
where (in R-Tang)

special ribbon braids

o;=id) ®...®id;_1) ® 0 ®id(j42). @ ... ®id,.
pi=1d) @ ... ®idi-1). @ Y Qid(i+1). ® ... @idy,.

These generators obey identities (3.1) if ¢ will be replaced by o; and ¢; by
;. Hence, by Lemma 3.2 and Proposition 3.3 every morphism § € R-Braid,,
can be written in the form 8 =™ - ... ¢ - w(o}!) where m; € Z for all
i € {1,...,n} and w is a word in (¢f')7Z}. Using standard arguments (see
(1, 3, 14, 28, 15]) one concludes that if two ribbon braids 8, = @™ -...- @™ -
wl(a;-tl) and By = it - ... okn -wz(a;-“) are equivalent then (my,... ,m,) =
(kiy .-, kn) and wi(95') 2 wy(o5'). Hence, the n.th ribbon braid group
RB,, and the group of ribbon n-braids R-Braid,, are canonically isomorphic.
Therefore R-Braid is equivalent to the free balanced category generated by
one object.

REMARK 6 If a ribbon braid diagram may be represented in standard posi-
tion [31] we will occasionally denote it by the underlying diagram of the core
braid. For example 0~ = X

The closure of a ribbon braid or ribbon tangle had been defined in [32].

DEFINITION 3.9 Let 3 be a ribbon n-braid. Then the closure E 1s obtained
from 3 by attaching n oriented bands s; = I x I which ere directed along the
core I x {1/2} such that

1. The subset {0} x I of the boundary of the band s; will be attached to the
i.th segment ai the bottom of the ribbon braid and {1} x I will be glued
to the i.th segment at the top of the ribbon braid in such a way that the
orientations and directions are compatible.

2. The linking number of the canonically directed boundary strands I x {0}
and I x {1} of the band s; s U whale the segments {0} x I and {1} x I
are kept fized.
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Figure 2: A directed ribbon braid 3 and its directed closure 3.

s

The bands (s;), are pairwise disjoint and intersect with the ribbon
braid 8 only in its segments in R x {0} and R x {1} according to (1).

4. Along their directed cores the bands s; proceed frem the bottom to the
top of the ribbon braid in e right handed way with respect to the vectors
(1,0,0) and (0,0,1)8.

An example of a ribbon braid and its closure is shown in Figure 2. Obviously
the closure is uniquely defined up to equivalence of ribbon links.

Prorosition 3.10 The closure of a ribbon braid is an oriented directed ribbon

link. Conversely every oriented directed ribbon link is the closure of a ribbon
braid.

PROOF. Obviously the closure of a ribbon braid is an oriented directed ribbon
link. On the other hand the oriented directed ribbon link £ can be described
as a double link (L, L) according to Remark 5. Using standard arguments
and results (see (3, 14, 28, 31, 15]) we proceed as follows. We perform a
(combinatorial) isotopy I on the directed link L which leads to a closure b
(of a downward directed braid b) which is combinatorially equivalent to L [3].
The regular neighbourhood of any component &£ of L and the accompanying
knot £’ of k will be mapped homoemorphically into a regular neighbourhood
of the transformed knot in b and an accompanying knot in this transformed
regular neighbourhood. Hence, £ is ambient isotopic to a ribbon link L=
(I(b) = b,I(L")) which has a double link diagram where the projection of
the knot I’ of any component (I,I) of L intersects with the projection of any
knot of the double link £ other than ! only in the rectangle neighbourhood

SThe vectors (1,0,0) and (0,0,1) are defined in R? x I contairing the ribbon braid b.
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containing the braid b. Application of another appropriate isotopy transforms
all selfcrossings of any component (1,1') of £ into the interior of the rectangle
neighbourhood containing b and yields a closure of a double braid 3 which is
isotopic to L. =

The Markov Theorem for ordinary braids [3] can be adapted to ribbon braids
as follows.

Turorem 3.11 Let £ and Z be two directed ribbon links represented as clo-

sure of double braids, L = ((b ¥),n) and £ = ((b,¥),7) where |b] = n and
|b| = 7. Then L is equivalent to L as directed ribbon link if and only if the
ribbon braids (b, V) and (b b') are connected by a finite sequence of directed
ribbon braids ((b,¥'),n) = ((by,¥),11) — ... = ((bm, b)), nm) = ((b, '), 7')
such that each ribbon braid ((b;, b)), n;) can be obtained from ((b;—1, b;_,), ns1)
by one cof the two following moves or their inverses in R-Braid.

1. Br)—= (v-B- (7)Y 7).
2. (B.1) = (pFt -0t -Br+1).

PROOF. Of course, closures of directed ribbon braids which differ by a finite
sequence of the above mentioned moves are isotopic.

Conversely, suppose that £ 2 £ are isotopic ribbon links, and let. £ 2 (b, )

and £ = (b,"). Then in particular b = ¥ and according to the ordi-
nary Markov Theorem [3] there exists a sequence of ordinary Markov moves
(b;n) = (b,n1) = ... = (b)) = (E,ﬁ) on ordinary braids such that
each brzid (b;,n;) can be obtained from (b;_y,n;_)) by one of the ordinary
Markov moves or their inverses. These ordinary moves will be used to de-
sign ribbon moves as follows. An ordinary conjugation gives rise to a ribbon
braid conjugation where the ordinary generators ¥; of the braid group will
be replaced by the generators ¢; of the ribbon braid group R-Braid. An or-
dinary Markov move (¢,r) — (U, - ¢,7 + 1) will be replaced by a ribbon move
(8,7) = (1pFt-0%'. 8, r+1) of the corresponding ribbon braid 3. Then by con-
struction, this sequence of ribbon Markov moves ((b, ¥'),n) = ((b, b}),n,) —

.. = (b, ), ) yields a double braid ((b,,, ¥,,), n») whose closure is iso-
topic to the closure of ((b, '), ») and to £ and L. Since the underlying braid b,,,
of the double braid (b,,,b],) and the braid b of the double braid (b, %) are iso-
topic by construction, one concludes with the help of Lemma 3.2 that the rib-
bon braids (b, i.,,) and (b, ) differ at most by (b, ¥') = ¢ -.. .- @2 (b, b.,.).
Furthermore the internal linking numbers of each double knot component
of the closure of (b,b') and its corresponding counterpart in the closure of
(bom, b,) coincide. Hence, the cycle decomposition sums of the exponents
(m:)2_, vanish. That is, if = = (k!, .. k). - (K. . kD) is the maximal-
length cycle decomposition of the underlying permutation 7 of the ribbon
braids (bm,b,) and (b,b') then Z:ilmkg =0 for all j € {1,...,7}. Since
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R-Braid, = Z", % By, one derives (bm, By =xtooxt0) x X
where x; = gokjm"{ (Z' ™) for j € {1,...,7}. This means that

sjl

(bm, b)) and (b, &) differ by conjugation in R-Braid;. =

Like in [3] one argues that a map f : RBy = R-Braide, — S induces an
isotopy invariant fin the set S if f is invariant under the moves (1} and (2)
of Theorem 3.11. And conversely, a ribbon link invariant f in S defines a
map f : RBo = R-Braid,, — S, f(8) := f(ﬁ) which is invariant under the
moves (1) and (2) of Theorem 3.11.

DEFINITION 3.12 A ribbon Markov trace Tr is a map Tr : R-Braid,, — S
which obeys the relations Tr(B)-B2) = Tr(B2-B1) and Tr(pT!-02!-3) = Tr(5)
for any B, 3, € R-Braid, and n € Ny. Hence, Tr induces a ribbon link
invariant Tr.

In the remainder of this section we lean on Turaev’s work [29]. We will
define a special class of ribbon Markov traces arising from balanced Markov-
Yang-Bc.xter operators on a balanced category with duality. Suppose that

(R ) is a balanced Yang-Baxter operator on an object V. Then the
prev10usly defined group G¥ is generated by (1/),),=1 and (¢;)j=1 which obey
the identities (3.1). Therefore a unique group homomorphism v, : RB,, =
R-Braid, — G?¥ exists such that vf(0;) = ¢: and v(p;) = ¢;.

Prorosition 3.13 Let C be a balanced category with duality and R=(§,<p,p,)
a balanced Markov-Yang-Bazter operator on an object V in C. Then Ty :
R-Braid,, — Endc(f), defined by Te*(B8) := tr(v[5(8) o u®»1) for 8 €

R-Braid g, is a ribbon Markov trace, and therefore Tr® is a ritbon link
invariant in Endc(1).

PROOF. Since the (v®)nen, are group morphisms and v®, | (8) = v/F(3) ®idy
for A € R-Braid,, we ean nse Proposition 2.13 to complete the proof. [

Let henceforth C be the category of finite-dimensional vector spaces over a
field k (or more general the finite rank modules over a commutative ring
k). Then any (balanced Markov-)Yang-Baxter operator can be rescaled, R =
(Ryo,p) > R =(A-Rx-o,m), A€k".

Suppose that R = (ﬁ, @, p) is a balanced Markov-Yang-Baxter operator on
a vector space Vand Y, 04 Ri = 0. It follows from the properties of R that
(3" i0dd @i B)o(idy @ —®idy) = 0 and (3; o en @4 )o(1dv®<p ©®idy) =
0. If one of the partial sums ¥, .,  0:- Rior ¥, ..., @i- R is an isomorphism
the linear morphism ¢ is a multiple of the identity, X - idy. Then, rescaling
with this paramter X yields an enhanced Yang-Baxter operator [29]. The
so obtained ribbon link invariant of a ribbon link £ = (L, L’) is the link
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SRS

Figure 3: Conway triple (L_, Lo, L)

invariant of L multiplied by A™ where m = 37, 1 k(k, k') is the sum of the
internal linking numbers (or generalized twists) of the particular components
(k, k") of the ribbon link £. Especially the polynomial invariants related to
certain algebras allowing algorithmic coniputation of the invariants in terms
of skein relations on Conway triples (see Figure 3) only admit such kind of
MYB invariants of ribbon links. Examples are the invariants coming from
all sorts of Hecke algebras, like the Jones or the HOMFLYPT polynomials.
More interesting with this respect are therefore balanced MYB operators with
higher order minimal polynomials yielding more subtle annihilation relations
— of course, such MYBs need to be constructed explicitely. Similarly as in [29]
we define two sorts of annihilation of ribbon link invariants. Suppose that T
is an invariant of (directed) ribbon links in a k-module S. Let f € Kk[t, ¢!
be a Laurent polynomial, f = ZLP ki - t*. Then we say that f annihilates T
with respect to the braiding, f x, T' = 0, if for any tuple of oriented ribbon
links (Lp, Lpy1,-- . . Ly) whose diagrams coincide outside some small disk D

and differ by
N
Ly = :
;\/\(w)-

(3.5)
within the disk D, the equation ZLP k; - T(L;) = 0 holds.
A Laurent polynomial g = Y_;__I; - t* annihilates the ribbon link invariant

T with respect to the twisting, ¢ «, T = 0, if for any tuple of oriented ribbon
links (L;, Lyy1,- .. ,Ls) whose diagrams coincide outside some small disk D

and differ by
“ &3
Lr+l = J ev e e LS = {W
ﬁ g (s-r).
: 0 (3.6)

~
I
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within the disk D, the equation Y ;_.I; - T(L;) = 0 holds.

Prorosition 3.14 Let R = (E, @, 1) be a balanced Markov-Yang-Baater
operator on a k-module V either obeying the identity ZLP ki-R' =0 or
D iarls ¢’ =0. Then

q — i ) —_
(z k; - ti) ., TR =0 and (z lj . tj) %, =0 (3.7)
j=r

i=p
hold respectively.

PROOF. Let (Lg)x be ribbon links whose diagrams differ in o sufficiently
small disk D either by (3.5) or (3.6). Then the identities (3.7) can be derived
in a similar way as the corresponding results in [29]. =

REMARK 7 As in [29] one argues that for any ribbon EYB operator R :=
(ﬁ, ®, 1) over a finite-dimensional vector space k there exist nontrivial poly-
nomials f and g of degree < dim(V)? and < dim(V') respectively such that
f+aT®=0and g+, TR =0.
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Lectures on the dynamical
Yang-Baxter equations

Pavel Etingof and Olivier Schiffmann

1 Introduction

This paper arose from a minicourse given by the first author at MIT in the
Spring of 1999, when the second author extended and improved his lecture
notes of this minicourse. It contains a systematic and elementary introduction
to a new area of the theory of quantum groups — the theory of the classical
and quantum dynamical Yang-Baxter equations.

The quantum dynamical Yang-Baxter equation is a generalization of the
ordinary quantum Yang-Baxter equation. It first appeared in physical lit-
erature in the work of Gervais and Neveu [GN], and was first considered
from a mathematical viewpoint by Felder [F], who attached to every solution
of this equation a quantum group, and an interesting system of difference
equations, - the quantum Knizhnik-Zamolodchikov-Bemard (qKZB) equa-
tion. Felder also considered the classical analogue of the quantum dynamical
Yang-Baxter equation — the classical dynamical Yang-Baxter equation. Since
then, this theory was systematically developed in many papers, some of which
are listed below. By now, the theory of the classical and quantum dynamical
Yang-Baxter equations and their solutions has many applications, in partic-
ular to integrable systems and representation theory. To discuss this theory
and sonie of its applications is the goal of this paper.

The structure of the paper is as follows.

In Section 2 we consider the exchange construction, which is a natural
construction in classical representation theory that leads one to discover the
quantum dynamical Yang-Baxter equation and interesting solutions of this
equation (dynamical R-matrices). In this section we define the main objects
of the paper — the fusion and exchange matrices for Lie algebras and quantum
groups, and compute them for the Lie algebra sl; and quantum group U, (sls).

In Section 3 we define the quantum dynamical Yang-Baxter equation, and
see that the exchange matrices are solutions of this equation. We also study
the quasiclassical limit of the quantum dynamical Yang-Baxter equation — the
classical dynamical Yang-Baxter equation. We conjecture that any solution
of this equation can be quantized. We compute classical limits of exchange
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matrices, which provides interesting examples of solutions of the classical
dynamical Yang-Baxter equation, which we call basic solutions.

In Section 4 we give a classification of solutions of the classical dynamical
Yang-Baxter equation for simple Lie algebras defined on a Cartan subalge-
bra, satisfying the unitarity condition. The result is, roughly, that all such
solutions can be obtained from the basic solutions.

In Section 5 we discuss the geometric interpretation of solutions of the
classical dynamical Yang-Baxter equation, which generalizes Drinfeld’s geo-
metric interpretation of solutions of the classical Yang-Baxter equation via
Poisson-Lie groups. This interpretation is in terms of Poisson-Lie groupoids
introduced by Weinstein.

In Section 6 we give a classification of solutions of the quantum dynami-
cal Yang-Baxter equation for the vector representation of gly, satisfying the
Hecke condition. As in the classical case, the result states that all such solu-
tions can be obtained from the basic solutions which arise from the exchange
construction.

In Section 7 we discuss the "noncommutative geometric” interpretation
of solutions of the quantum dynamical Yang-Baxter equation, which general-
izes the interpretation of solutions of the quantum Yang-Baxter equation via
quantum groups. This interpretation is in terms of quantum groupoids (or,
more precisely, H-Hopf algebroids).

In Section 8 we give a defining equation satisfied by the universal fu-
sion matrix — the Arnaudon-Buffenoir-Ragoucy-Roche (ABRR) equation, and
prove it in the Lie algebra case. We give applications of this equation to com-
puting the quasiclassical limit of the fusion matrix, and to computation of
the fusion matrix itself for sl,.

In Section 9 we discuss the connection of solutions of the quantum dy-
namical Yang-Baxter equation to integrable systems and special functions,
in particular to Macdonald’s theory. Namely, we consider weighted traces of
intertwining operators between representations of quantum groups, and give
difference equations for them which in a special case reduce to Macdonald-
Ruijsenaars difference equations.

Appendix A contains the classification of solutions of the classical dynani-
ical Yang-Baxter equation for simple Lie algebras defined on subspaces of the
Cartan subalgebra.

Appendix B contains a proof of the ABRR equation in the quantun case.

At the end we review some of the existing literature that is relevant to
the theory of the dynamical Yang-Baxter equations.

To keep these lectures within bounds, we do not discuss dynamical Yang-
Baxter equations with spectral parameter. These equations are related to
affine Lie algebras and quantum affine algebras just like the equations without
spectral parameter are related to finite dimensional Lie algebras and quantum
groups. Most of the definitions and results of these lectures can be carried over
to this case, which gives rise to a more interesting but also more complicated
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theory than the thenry deseribed here. A serions diseussion of this theory
would require a separate course of lectures.

Acknowledgements. We thank the participants of the miinicourse at
MIT and of the ”Quantum groups® conference in Durham (July 1999) for
interesting remarks and discussions. We are grateful to IHES and Harvard
University for hospitality. The work of P.E. was partially supported by the
NSF grant DMS-9700477, and was partly done while he was employed by the
Clay Mathematics Institute as a CMI Prize Fellow.

2 Intertwining operators, fusion and
exchange matrices.

2.1. The exchange construction. We start by giving a simple and nat-
ural construction in classical representation theory which leads to discovery
of the quantum dynamical Yang-Baxter equation.
Let g be a simple complex Lie algebra, h C g a Cartan subalgebra and

A C b* the associated root system. Let II be a set of simple roots, A* C A the
associated system of positive roots. Let g = n_@h@n, be the corresponding
polarization of g and let g, be the root subspaces of g. Let (, } be the
nondegenerate invariant symmetric form on g normalized by the condition
{a,a) = 2 for long roots. Finally, for each a € A, choose some e, € g, in
such a way that {(e,,e_o) = 1.

For X € b*, let C, be the one-dimensional (§ & n,)-module such that
Cy = Czy with h.zy = A(h)z, for h € h and n,.z)y = 0. The Verma module
of highest weight X is the induced module

M)\ = Illdn

beny C)"

Notice that M) is a free U(n_)-module and can be identified with U(n_)
as a linear space by the map U(n_) 5 My, u — u.z).

Define a partial order on h* by putting ;2 < v if there exist oy, ... a, € A*,
r>0,suchthat v = p+ a1+ ... +a,. Let M, = ®psA M, [p] denote the
decomposition of M into weight subspaces.

The ifollowing proposition is standard.

Proposition 2.1. The module M) is irreducible for generic values of X.

Define also the dual Verma module M} to be the graded dual vector space
@D, Mx[u]* equipped with the following g-action:

(a.u)(v) = —u(av) Va € g, v € M3, v € M,.

Let z3 be the lowest weight vector of My satisfying (z,,z}) = 1.
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Now let V be a finite-dimensional g-module. Let V = @,.,. V(] be its
decomposition into weight subspaces. Let A, u € h* and let us consider g-
module intertwining operators

O My—-> M, @V
If @ is such an intertwining operator, define its ” expectation value” by
(@) = (d.25,7,) € V[A - p].
Remark. This definition is similar to the notion of expectation value in
quantum field theory.

Proposition 2.2. Let M, be irveducible. Then the map
Homg(My, M, @ V) = V[A - 4], & — (®)

is an isomorphism.

Proof. By Frobenius reciprocity, we have

Homgy(My, M, ® V) = Honlygn, (Ca, My, € V) = Homygn, (Ca @ M, V).

Moreover, since M, is irreducible, we have A, = Illdg$“+(c_p asan h O ny-
module. In particular,

Homygn, (Cy ® M2, V) = Homy(Cr ® C-,,, V) = V[A - 4.
]

This proposition can be reformulated as follows: for any v € V [\ — y] there
exists a unique intertwining operator ®3 : M, — M, ® V such that

Oi(z)) €T, ®v + @Mp[u] ® V.

vy

Notice that ®} (for fixed v) is defined only for generic values of X. Identifying
the Verma modules M, and M, with U(n.), we can view ®J as a linear map
Uny) = Uny) @ V. Tt is easy to see that the coefficients of this map (in
any basis) are rational functions of .

We would now like to consider the " algebra” of such intertwining operators.
Let us denote by wt{u) € h* the weight of any homogeneous vector » in a g-
module. Let V, W be two finite-dimensional g-modules, and letv € V, w € W
be two honiogeneous vectors. Let X € h* and consider the composition

‘):’— wt(v)

w,. v d’“ d’
Y My = Mywe(n) ® V. =" Mi_wi(v)—wiin) @ W Q V.
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(Here and below we abuse notations and write @ instead of ® ® 1). Then
)" € Homg( M), My —wi(v)-wi(wi ® W ® V). Hence by Proposition 1.2, for
generic A there exists a unique element v € V @ W{wt(v) + wt(w)] such that
Oy = Y. It is clear that the assignment (»,w) — u is bilinear, and defines
an Bh-linear map

Jwv()\)l WeV-WwWelV,
w @ (807)

Definition. We call the operator Jiyv () the fusion matriz of V and W.

We will now list some fundamental properties of fusion matrices. First let
us introduce an iniportant piece of notation to be used throughout this text.
i A,,... A, are semisimple h-modules and F()) : /;®...®A, — A,®...QA,
is a lineer operator depending on X € h* then, for any homogeneous ay, .. . a,
we set

F(x - ll(i))(al ®...®e,) :=F(A-wt(a;))(a1 ® ... ®a,).
Proposition 2.3. Let V,W be finite-dimensional g-modules. Then
1. Jwv (X)) is a rational function of .
2. Jwv(X) is strictly lower triangular, i.e. J =1+ N where
NWwpeViu)c @ Wire V]
T<vuco
In particular, Jwy (X)) is invertible.

3. Let U,V,W be finite-dimensional g-medules. Then the fusion matrices
satisfy the following dynamical 2-cocycle condition:

JU@!MV()\)(JUW()\ - h(a): ®1) = JU‘ng()\)(l ® Jwv()\)).
onUVeW,

Proof. Statements 1. and 2. follow fron1 the definitions and from the fact that
the intertwining operators ®} are rational functions of A. To prove statement
3,let u e U, v €V, we€ W be homogeneous elements and consider the
composirtion
&3 ()
My —= Mawr(n) @V — " My_wi(o)-wi(w) W RV
¢

u
A-wi(r)— we(w)

— My wt(u)-wt()-wtw) QU AW @ V.
The dynamical 2-cocycle condition follows from the associativity relation
LY wt(w)-wi(u) 2 (Pr—w(w) © PR) = (PXowi(w)—wi(w) © Pa-we(r)) © X

and from the definition of the fusion matrices. |
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The fusion matrices can be viewed as the structure constants for multiplica-
tion in the "algebra” of intertwining operators. We now turn to the structure
constants for "commutation relations”. Let V, W be two finite-dimensional
g-modules. Let us define

Ryw(}) = Jyw(N)JEv(A) € Homy(V @ W,V @ W),

where J? = PJP with P(z ® y) = y ® z. The above definition can be
rephrased in terms of intertwining operators as follows: Ryw(A)(v ® w) =
Y v @ w; where @37 = Py, 1™,

Definition. The operator Ryw()) is called the exchange matriz of V and
w.

Proposition 2.4. Let U, V,W be three finite-dimensional g-modules. Then
the exchange matrices satisfy the following relation

va()\ - h(z))Rvul:)\)Rwu()\ - h(l)) = Rwy()\)Rvu()\ - h(z))va()\) (2.1)
in the algebra HomglV @ W R U,V @ W e U).

Proof. Let v € U, v € V, w € W be homogeneous elements and, as in
Proposition 2.3, consider the composition ;™" = @K_“,t(v)_wt(w) ° @f_m(v) °
®%. The proof of relation (2.1) is obtained by rewriting ®}™" as ) o ®J"™
where o: UQWQRV - VRWRU, 10y ® z+— 2®y® z, using exchange
matrices in two different ways according to the following hexagon

UV@VeW—VoleW
UeWweV VeweU

WelUeV -WeVvel

Remark. One can also deduce this proposition from Part 3. of Proposition
2.3. Namely, one can show that if J()) is any element of the completion of
U(g)®U(g) which satisfies the dynamical 2-cocycle condition (where Jy -y ()
denotes the projection of J(A) to the product V @ W of finite dimensional
modules V, W) then the element R(\) = J(A)"'J*()) satisfies the quantum
dynamical Yang-Baxter equation.
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Example 1. Let us evaluate the fusion and exchange matrices in the sim-
plest example. Namely, take g = sly = Ce®Ch®Cf andV = C? = Cv, §Cv_
with

hog = vy, ev_ =vy, ev, =0, fv_=0, fo,=v_.

Let us compute the fusion matrix Jyv()). By the triangularity property of
va()\), we have

Sy M) (vL ®vy) = vi ®uy, Joy(MN(v_Quv,)=v_Qu,,

so it remains to compute Jyv(X)(v_ ® v..). Consider the intertwiner @}~ :
My — My, ® V. By definition, ) (z,) = zap1 @ v- + y(A) fzapn @ vy. To
determine the function y()), we use the intertwining property:

0= 8} (ez3) = (e®1+1® e)By (22) = Ta1 ® 4 + y{N)efTan B2,

=1 @ vy +yA)(h + fe)Ta @ vy
= @ vy + (A + 1Dy(N) 2o @ vy

Hence y(A\) = — ;\ﬁ A similar computation shows that &', (zx41) = 2aQu,.
Thus
1

O3 (22) =B34, PN (22) = 1@ (v, Qu_— T ®v. )+ lower weight terms.
Therefore Jyv(A)(vy ® v-) = v, @ v = 51v- @ vy, and

1 0 00

0 1 00

=19 _d 10
0 0 01

The exchange matrix is now easily computed. In the basis (v, ® v, v, @v._,
U_ ® vy, v_ ®v_) it is given by

10 0 0
0 1 -5 o0
=10 g5 13 o0
0 0 0 1

2.2. Generalization to quantum groups. The construction of inter-
twining operators, fusion and exchange matrices admit natural quantum ana-
logues. Let Uy(g) be the quantum universal enveloping algebra associated to
8, as defined in [CP], Chapter 6., and for each A € h*, let M, be the Verma
module of highest weight A\. Then Proposition 2.2 and the definiticn of the
fusion matrices Jy v()) are identical to the classical case. In this situation,
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Proposition 2.3, parts 2., 3. hold. However, the fusion matrices are no longer
rational functions of A, but rather trigonometric functions (i.e rational func-
tions of g<*>, a € A).

Let R € U,(3)®U,(g) be the universal R-matrix of Uy(g). Let V,W be
two finite-dimensional U,(g)-modules. The exchange matrix is defined as

Rvw () = Jyw MRy lel},v()‘)

where RZ,, is the evaluation of R¥? on V@ W.

In terms of intertwining operators, the exchange matrix has the following
interpretation. Recall that if V' and W are any two Uy(g)-modules then
PRyw : VOW — W@V is a Uyg)-intertwiner. Then Ryw(A)(v ® w) =
Zi v; ® w; where Pvaq’f’v = Zl @Ki’w'.

With this definition, Proposition 2.4 is satisfied. The quantum analogues
of the fusion and exchange matrices in example 1 are

1 0 00
0 1 00
Jvv(A) = -t ,
i) =1 S 10
0 0 01
q 0 0 0
0 1 g9 t-g 0
Ryy(A) = q-1—g (qz(ux)zz(z)‘):;;(—xil)_q—z)
0 q—2(A+l)_l (qz(un)_l)z 0
0 0 q

3 The dynamical Yang-Baxter equations.

3.1. Proposition 2.4 motivates the following definition. Let § be a finite-
dimensional abelian Lie algebra and let V be a semisimple h-module. Let us
denote by M the field of meromorphic functions on §*. Let us equip M with
the trivial h-module structure.

Definition. Let R: VRV QM -V ®V ® M be an h-invariant and M-
linear map. Then the quantum dynamical Yang-Baater equation (QDYBE)
is the following equation with respect to R:

R2(0 - i®)RBOYRP () - kD) = RBO)RBP( - KP)R()).
A quantum dynamical R-matriz is an invertible solution of this equation.
It follows from Proposition 2.4 that for any simple ccmplex Lie algebra g
and for any finite-dimensional g-module V, the exchange matrix Ry ()) is a

quantum dynamical R-matrix. The same is true if we replace the Lie algebra
g by the quantum group U,(g).
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Remarks. 1. The nsnal quantum Yang-Raxter equation is recovered from
the quantum dynamical Yang-Baxter equation when h = 0.

2. A constant solution of the quantum dynamical Yang-Baxter equation is
the sanie thing as a solution of the ordinary quantum Yang-Baxter equation
which is -invariant.

3. In physical literature, the variable X is called a dynamical variable. This
gave rise to the name "dynamical R-matrix”.

Replacing A by :;\ in the QDYBE yields tle following equation

RP (A = A RB()RP(A - vaM) = RBNRP(A - ®)RP (N, (3.1)
which is called the quantum dynamical Yang-Baxter equation with step ~.

Proposition 3.1. Let §) be an abelian Lie algebra. Let V' be a finite dimen-
sional semisimple h-module and let R : §* — Endy(V ® V)|[[7]] be a series
of meromorphic functions of the form R =1 — yr + O(v®). If R satisfies
the quantum dynamical Yang-Bezter equation with step y then r satisfies the
following classical analogue of the quantum dynamical Yang-Bazter equation:

z (z(l)aTZS()\) B 1(2)67-13()\) + x(3)67‘12()\)) .

R o or toort
[P2(0), PR + [P0, PP ()] + [PP(A), (W) = 0

(3.2)

i

where (z;) is a basis of § and (%) is the dual basis of h*.
This leads to the following definition:

Definition. Let g be a finite-dimensional Lie algebra and let h C g be a
Lie subalgebra. The classical dynamical Yang-Bazter equation (CDYBE) is
equation (3.2) with respect to a holomorphic, h-invariant function r : U —
g ® g, where U C h* is an open region. A solution to this equation is called
a classical dynamical r-matriz.

Remarks. 1. The ordinary classical Yang-Baxter equation is recovered
from the classical dynamical Yang-Baxter equation when §h = 0.

2. A constant solution of the classical dynamical Yang-Baxter equation is the
sanme thing as an h-invariant solution of the ordinary classical Yang-Baxter
equation.

We will now consider asymptotic behavior of fusion and exchange matrices,
and obtain solutions to the CDYBE. Let g be a simple complex Lie algebra.
Let V, W be two finite-dimensional g-modules and let Jyw () and Ryw ()
be the fusion and exchange matrices of V and W.
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Proposition 3.2 ([EV3]). 1. The function .]Vw(fyl) is reqular at v = 0 for
generic values of \.

2. Set va(%) =1+ yjyvw(r) + O(v?). Then jywi)) is the evaluation
onV @ W of the element

. €_a B eq
](A): —EWGI‘I_®I‘I+.
a>0 :

Corollary 3.1. We have va(j\—/) =1 - yr(A)wew + O(7%) where

rO) =) - ) = 3 R e O, (33)

a>0

A proof of Proposition 3.2, which is based on computing the asymptotics
of intertwining operators at A — oo, is given in [EV3]. Later we will give
another proof of this Proposition.

It follows from Proposition 3.1 that #()) in (3.3) is a classical dynamical
r-matrix. Let us call it the basic rational dynamical r-matriz.

Proposition 3.2 and Corollary 3.1 have natural quantum analogues. Let
Uy(g) be the quantun group associated Lo g witlh quantui paraweter ¢ =
e~€/2 for some fixed € € C and formal parameter . Let V, W be two finite-
dimensional U,(g)-modules and let Ryw()) be the exchange matrix. Set

va()\) = va(:-\f).
Proposition 3.3 ([EV3]). We have
Ryw() =1 - 15, () + O(¥%)

where T4y, 1 h* — Endg(V @ W) is the evaluation on V @ W of the jollowing
universal element:

r¥(A) = gQ + z gcotanh (g(a, )\)) (a®e n—€_nRey) EgRg (34)
a>0

where Q € S%g is the inverse element to the form (, ) (the Casimir element).

It follows from Proposition 3.1 that 7¢()) is a solution of the CDYBE. Let
us call it the basic trigonometric dynamical r-matriz.

3.2. Quantization and quasiclassical limit. Let § be an abelian Lie
algebra and let V be a finite-dimensional semisimple §-module. Let 7 : h* —
Endy(V ® V) be a classical dynamical r-matrix. Suppose that R : h* —
Endy(V @ V)|[[7]] is of the form R = 1 — yr +O(~?) and satisfies the QDYBE.
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Definition. R is called a quantization of r. Conversely, r is called the
quasiclassical limit of R.

For instance, the exchange matrix RVV(X) constructed from a Lie algebra
g is a quantization of the evaluation on V ® V of the basic rational dynamical
r-matrix. Similarly, exchange matrices constructed from quantum groups
provide quantization of the basic trigonometric dynamical r-matrix.

Conjecture: Any classical dynamical r-matrix admits a quantization.

Notice that when § = 0, this conjecture reduces to the conjecture of Drin
feld [Dr] about quantization of classical (non-dynamical) r-matrices, which
was proved in [EK]. In the skew-symmetric case, the conjecture was recently
proved in [Xu2], using the theory of Fedosov quantization.

3.3. Unitarity conditions. Recall the following nctions introduced by
Drinfeld. A classical r-matrix r € g® g is a quasitriangular structure on a Lie
algebra g if r + v € (S2g)?. It is a triangular structure on g if r + 72! = 0.

This definition is natural in the theory of Lie bialgebras. Namely, a clas-
sical r-matrix 7 € g ® g defines a Lie bialgebra structure on g by d : g —
ANg, r—= 1@z +2®1,r]if and only if r 472 € (S%g)9. Tn the ease of a
simple Lie algebra g we have (529)? = C(Q, so that a classical r-matrix r is
quasitriangular if r + 72! = £Q) for some € € C, and it is triangular if moreover
e=0.

This leads one to make the following definition:

Definition. A classical dynamical r-matrix 7 : §* — (g ® g)¥ has coupling
constant ¢ if
r+ 72 =eQ. (3.5)

Equation (3.5) is called the unitarity condition. Notice that the basic rational
dynamical r-matrix () and the basic trigonometric dynamical r-matrix ()
have coupling constants 0 and ¢ respectively.

4 Classification of classical dynamical
r-matrices.

In this section, we give the classification of all dynamical r-matrices r :
h* — g ® g which have coupling constant ¢ € C.



100 Pavel Etinghof & Olivier Schiffmann
4.1. Gauge transformations. Consider the following operations on mero-
morphic maps 7 : §* — (g @ g)".

L r(A) = 7(A) + X.; Cij(N)zi A x5, where 3, - Cijilambda)d); A d); s
a closed meromorphic 2-form.

2. 7(A) — (X — v), where v € b*.
3. r(A) — (A® A)r(A*)), where A € W, the Weyl group of g.

Lemma 4.1. Transformations 1-3 preserve the set of classical dynamical r-
matrices.

The proof is straightforward.
Two classical dynamical r-matrices which can be obtained one from the
other by a sequence of such transformations will be called gauge-equivalent.

4.2. Classification of dynamical r-matrices with zero coupling con-
stant. Let [ D § be a reductive Lie subalgebra of g. Define

() = 2; Ca® e‘a,—;)‘“ Bea (4.1)

ea €l

It is clear that this is the image of the basic rational dynamical r-matrix of [
under the embedding [ C g.

Theorem 4.1 ([EV1]). Any classical dynamical r-matriz v: §* — (g ® g)°
with zero coupling constant is gauge-equivalent to T'()\) jor some [.

4.3. Classification of dynamical r-matrices with coupling constant
€ € C*. Let X C II, and denote by (X) C A the set of all roots which
are linear combinations of elements in X U —X. For any & € A introduce a
meromorphic function @, : §* — C by the following rule. Set po(}) = 5 if
a € A*\(X), pu(A) = —§ if a € A™\(X) and

€ €
YalX) = icotanh (E(A,a))
if a € (X).
Theorem 4.2 ([EV1]). Let X C II. Set
€
rx(A) = 50+ 062; Ga(N)ea ® €.

Then r5(X\) is a classical dynamical r-matriz with coupling constant e. More-
over, any classical dynamical r-matriz with coupling constant ¢ is gauge-
equivalent to 5 (\) for a suitable X C IL.
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Remarks. 1. The basic trigonometric dynamical r-matrix °()) is obtained
when we take X = II. Moreover, the r-matrix 7%()) is equal to a limit of
7¢(X — v) when » tends to infinity in §* in an appropriate direction. In other
words, every classical dynamical r-matrix with nonzero coupling constant
is a limiting case of the basic trigonometric r-matrix.

2. Let W be the Weyl group of g, and let w £ W. Let A € §* tend to infinity
in a generic way in the Weyl chamber associated to w. Then

hm7l()\ zz,®z,+ z €a®e_q,
a€w(At)
which is the standard classical r-matrix corresponding to the polarization of
g associated to w. Hence the basic trigonometric dynamical r-matrix 7!(})
interpolates all h-invariant classical (non-dynamical) r-matrices r satisfying
r+ 72 = Q, (up to the addition of a skew 2-form in A2h).

A classification of all classical dynamical r-matrices 7 : [ — (g ® g)' where
g is a simple Lie algebra and [ C § is given in [S]. This classification gen-
eralizes both the above classification (when [ = §) and the Belavin-Drinfeld
classification of classical r-matrices (when [ = 0) (see Appendix A).

5 Classical dynamical r-matrices and Poisson-
Lie groupoids

In this section we give a geometric interpretation of the CDYBE. Let us
first briefly recall the relationship between the classical Yang-Baxter equation
and the theory of Poisson-Lie groups, develcped by Drinfeld.

5.1. Poisson-Lie groups. Let G be a (complex or real) Lie group, let
g be its Lie algebra and let O(G) be the algebra of regular functions on
G. Let {,} : O(G) x O(G) — O(G) be a Poisson structure on G. Let II
be the Poisson bivector field, defined by the relation {f,g} = df ® dg(IlI).
Recall that (G, {, }} is called a Poisson-Lie group if the multiplication map
m:G X G — G is a Poisson map.

Let p € A%g and consider the following bivector field:

H,=R, - L,,
where R, (resp. L,) is the left-invariant (resp. right-invariant) bivector field

satisfying (R,). = p (resp. (L,),e = p); in other words, R,, L, stand for the
translates of p by right and left shifts respectively.

Proposition 5.1 (Drinfeld). The bivector I1, defines a Poisson-Lie group
structure on G if and only if

[P:2, i3] + [P13, pas] + [pr2; pas] € (ASB:’“-
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When this is the case, (G is ealled a coboundary Poisson-Tie gronp. Two
cases are of special interest:

1. The exists T € (Szg)" such that [Plz,Pls] + [P]:;,Pz:;] + [P12,P23] =
}[le,T 23). This implies that r = p + %T satisfies the classical Yang-
Baxter equation, and II, = R, — L,. In this case G is called a quasitri-
angular Poisson-Lie group.

2. We have [p12, i3] + (13, pa3] + [p12, 23] = 0. In this case, G is called a
triangular Poisson-Lie group.

5.2. Poisson-Lie groupoids. It turns out that, in order to general-
ize this correspondence to the dynamical case, groups must be replaced by
groupoids. Recall that a groupoid is a (small) category where all mor-
phisms are isomorphisms. It is equivalent to the following data: two sets
X and P (the set of morphisms, or the groupoid itself, and the set of ob-
jects, or the base, respectively), two surjective maps s,t : X — P (the
source and target maps), an injective map £ : P — X (the identity mor-
phisms), a map m : {(a,b) € X x X | t(a) = s(b)} — X (m(a,b) = boa,
the composition of morphisms). and an involution ¢ : X — X such that
s(i(x)) = t(x), t(i(z)) = s(z), m(i(z), z) = Idyz) and m(z,i(z)) = Idy,) for
all = € X, satisfying sonie obvious axioms. One can visualize elements of X
as arrows s(a) — t(a).
Note that when |P| = 1, the notion of a groupoid coincides with the notion
of a group.

A Lie groupoid is a groupoid with a smooth structure (in particular, the
sets of objects and the sets of morphismis are smooth manifolds and the struc-
ture maps are smooth, see [M]).

Now we would like to generalize the notion of a Poisson-Lie group to
groupoids. The usual definition does not generalize directly since if X is
a Lie groupoid and a Poisson manifold then the set of points (a,b) € X2
for which the multiplication is defined is not necessarily a Poisson submani-
fold, so we cannot require that the multiplication map be Poisson. But this
difficulty can be bypassed using the following observation:

Proposition 5.2. Let X,Y be two Poisson manifolds and let f : X =Y be
a smooth map. Consider the graph T'y = {(z, f(x))} C X x Y, whereY is the
manifold Y, with the opposite Poisson structure {, }y = —{, }y. Then f is
a Poissen map if and only if 'y is a coisotropic submanifold of X x Y, ie
if and only if for any z € Ty, (T,Tf)* C T3(X x Y) is an isotropic subspace
with respect to the Poisson form II on T,(X x 7)‘

This gives rise to the following notion of a Poisson-Lie groupoid, first in-
troduced by Weinstein [W].
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Definition. A Lie groupoid X with a Poisson structure is called a Poisson-
Lie groupoid if T',, C X x X x X is a coisotropic submanifold.

We now restrict ourselves to a particular class of Lie groupoids. Let G
be a Lie group, let g be its Lie algebra, § C g a subalgebra and H a Lie
subgroup of G with Lie algebra . Let U C h* be an open set. Consider
the following groupoid: X = U x G x U, P = U with s(u),g,u) = v,
t(u1, g, u2) = up. The composition m((uy, g, u2), (u3, ¢ ,24)) is defined only
when u; = u3 and m((w1, 9,2), (v, ¢'; 14)) = (11, 9¢', u4). If @ is a function on
U we set a; = s*(a) € O(X) and a; = t*(a) € O(X). Let p: U — A%g be a
regular function.

The group H? acts on X by

(h[, hz)(ul, q, uz) = (Ad*(hl)ul, hlghz_l, Ad*(hz)uZ).

We want to define a Poisson structure on X for which (—s,t) is a moment
map for this action. This forces the following relations

{al,bl} = —[a,b]l, {az,bz} = [a, b]z, {al,bz} = 0,
{alaf} =Rnf5 {G'Zaf} = Lnf'

We try to complete the definition of the Poisson structure on X by adding
the relation

(5.1)

{f,9} = (&f @ dg)(Rpu) = Lpfun)) (5.2)

where f.g are any functions on X pulled back from G and a,b are linear
functions on U.

Proposition 5.3 ([EV1]). Formulae (5.1) and (5.2) define a Poisson-Lie
groupoid structure on X if and only if

1

1 a 23 a 13 : a 12 ; ; . .
3 (z,‘. )—a’; - —zﬁz)—a’; - +z§”—a’; — ) + {02, 0] + [0, P + [0'3, P2

is a constant g-invariant element of A%y, and
2. p is h-invariant.

When this is the case, X is called a coboundary dynamical Poisson-Lie
groupoid, which will be denoted by X,. Two cases are of special interest:

1. The exists T € (S?g)? such that

1 1) 67‘23()\) (2)67‘13()\) (3)67‘12()\)
Z[TmTza] = Z (zi 3z Y Ton +z; Dz

+ [p12, pr3] + [P13. 23] + (P12, pas)-

K]
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This implies that r = p + 1T satisfies the classical dynamical Yang-
Baxter equation. In this case X, is called a quasitriangular dynamical
Poisson-Lie groupoid.

2. We have
z (z(l) 67‘23()\) _ I(Z) 67,13()\) + 1‘(-3) 67‘12()‘))

9Tt R voor
+ [p12, pr3] + [p13: p23] + [012: p23] = 0.

i

In this case, X, is called a triangular dynamical Poisson-Lie groupoid.

Thus, the basic rational solution defined above gives rise to a triangular
dynamical Poisson-Lie groupoid, and the basic trigonometric solution gives
rise to a quasitriangular one.

6 Classification of quantum dynamical
R-matrices

In this section we give the classification of all quantum dynamical R-matrices
R : " — Endy(V®V), where b is the Cartan subalgebra of gl(n, C) consisting
of diagonal matrices, and V = C™ is the vector representation, which satisfy
an additional Hecke condition, a guantum analogue of the unitarity condition.

6.1. Hecke condition. Let b be the abelian Lie algebra of diagonal N by N
matrices, and let V' be the standard N-dimensional §-module. Let h,,. .., be
the standard basis of §, )y, ... A, be the corresponding coordinate functions
onh*, and V;, i =1,...n be the (one-dimensional) weight subspaces of V' of
weight w; where {(w;, h;) = d;;.

Consider the h-nmodule V ® V. Its weight subspaces are V, @ V, @ V, @ V,
and V, ® V,.

Definition. An operator R : §* — Endy(V ® V) satisfies the Hecke condi-
tion with parameter g € C* if the eigenvalues of PR (where P is the permu-
tation matrix) are lon V, ® V, and 1, —gon V, @ V, 8 , @ V.

This condition can be thought of as a quantum analogue of the unitarity
condition for classical r-matrices, since it is easy to show that the quasiclassi-
cal limit of an operator satisfying the Hecke condition satisfies the unitarity
condition. In particular if R satisfies the Hecke condition with ¢ = 1 then
RR? = 1, which can be thought of as a quantization of the relation r+72* = 0.

The terminology comes from the following remark: if R is a A-independent
solution of the quantum dynamical Yang-Baxter equation satisfying the Hecke
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condition with parameter g then R defines a representation of the Hecke alge-
bra H,, of type Ap_; on the space VP for any p > 1. Similar representations
can be defined for dynamical R-matrices (see [EV2] and Section 7).

6.2. Gauge transformations. Let R()) be a quantum dynamical R-
matrix satisfying Hecke condition with parameter g. The weight-zero and
Hecke conditions imply that

R(\) =Y Eaw®Eu + ; (N Eaa ® By + ; Bab(\) Eap ® Epe  (6.1)

where F;; is the elementary matrix, and v, o are meromaorphic functions
h* — C. So it is enough to look for solutions of this form.

As in the classical case, we will give the classificaticn of solutions up to
sonle group of transformations.

Definition. A muitiplicative 2-form on V is a collection meromorphic func-
tions {¢w : h* — (C}Z_‘,,,=l satisfying wapwee = 1 for all a,b. A multiplicative
2-form {@a(N)} is closed if for all a,b, c,

Sonb()‘) Sobc()‘) 9000()‘) =1.
Pab(A — We) Poc(X = Wa) Pea X — )

Consider the following operations on meromorphic weight-zero maps R :
h* — Endy(V ® V) of the form (6.1):

1.
RO = Y Faa®Fuat Y Pat(Nab(N) Eaz® B+ Y fan(A) Eab ® Eia,
a a#b azb
where {(pap())} is a closed multiplicative 2-form on V,

2. R(\) — R(X — v) where v is a pseudoconstant, i.e. a meromorphic
function h” — b~ such that v(A + w;) = v(A) for all i (for example, a
constant),

3. R\) = (0 ®0)R(07'\)(07' ®07') where 0 € G, acts on V and §” by
permutation of coordinates.

Remark. Here we allow to perform transformation 2 only if the answer is
meromorphic.

Lemma 6.1. Tranformations 1 — 3 preserve the set of quantum dynamical
R-matrices.

Two R-matrices which can be obtained one from the other by a sequence
of such transformations are said to be gauge-equivalent.
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6.3. Classification for ¢ = 1. Let X be a subset of {1,...n} and write
X =X U...UX; where X; = {a;... b} are disjoint intervals. Set

Rx()) = 2 E,,,,@sz >3 Ab(E,,,,@Eb.,+E.,a<x>E,,.,).
a,b=1 i=1 anX,
a#d

Theorem 6.1 ([EV2]). Let X C {1,...n}. Then Rx()\) is a quantum
dynamical R-matriz satisfying the Hecke cendition with ¢ = 1. Moreover,
any dynamical R-matriz R : §* — Endy(V Q@ V) is gauge-equivalent to Rx ()
for a unique subset X C {1,...n}.

Remark. The function Rx()\/7) is, up to a gauge transformation, a quan-
tization in the sense of Section 3 of the raticnal classical dynamical r-matrix
(4.1) corresponding to the reductive subalgebra of gl(n) spanned by root sub-
spaces ga, g-o fora € X.

The niost interesting solution Ry corresponds to the case when X =
{1,...,n}. We will call it the basic rational solution of the QDYBE.

6.4. Classification for g # 1. Let ¢ € 2inZ and set ¢ = ¢°. Let X be a
subset of {1,...n} and again write X = X, U...U X where X; = {a;...b;}
are disjoint intervals. Set

z Eow ® Eaa + z @ab(N) Eaa ® Epp + zﬁab()\ ab ® Epa,
a#b a#b

where 0gp(A) = g + Ba(X) and where Su()) is defined as follows: (3, =
s ,\b ;ifa,b € X for some 1 <1 <k, Bap(A) = 1 — g otherwise if a > b and

Bab(A) =0 otherwise if a < b.

Theorem 6.2 ([EV2]). Let X C {1,...n}. Then R5%()\) is a quantum
dynamical R-matriz satisfying the Hecke condztzon with ¢ = ef. Moreover,
any dynamicel R-matriz R : h* — End(V@V) is gauge-equivalent to Rx(X)
for a unique subset X C {1,...n}.

Remark. It can be checked that the R%()) yield (again up to gauge trans-
formations) quantizations of the trigonometric classical dynamical r-matrices
with coupling constant £ appearing in Theorem 4.2.

The most interesting solution R% corresponds to the case when X =
{1,...,n}. We will call it the basic trigonometric solution of the QDYBE.

6.5. The fusion and exchange matrices for the vector representation
of classical and quantum gl,. The above classification can be applied
to compute the fusion and exchange matrices for the vector representation.
Naniely, we have:
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Theorem 6.3 ([EV3]). 1. Let g = gl,, and let V = C™ be the vector repre-
sentation. Then

1
Jvv(A) =1+ z mEJm ® Ea

Ryy(X) = zEnn®Enn+ZﬁEba®Eab+zEnn®Ebb

a=1 a<b

Ezm ® Ebb

_z(,\,,- ,,+a-b-1)(,\,,-,\,,+a-b+1)

et ()\b —data- b)2

2. Let V = C" be the representation of U,(gly) which is the g-analog of the
vector representation. Then

Jvv(A) =1+ z WEM ® Eu

a<b

-1
Ryv()) —qu ®Enn+ZmEba®Eb+zEan®Ebb

a=1 n;éb a<b
(qz()\b—)\.,+n—b) _ q—Z)(qZ(,\,,~)\,,+n—b) —q )
+ 2; (g20wata—b) — 1)2 Eu ® By,
a>

Proof. The proof relies on explicit conmputations and on the classification of
quantum dynamical R-matrices (Theorems 6.1 and 6.2). More precisely, it is
possible to compute explicitly the coefficients of J correpsonding to simple
roots, and all the other coefficients are then uniquely determined by Theorems
6.1 and 6.2. |

Remark. The matrix coefficients of Jyy(}) for nonsimple roots are not as
easily computed directly as those for simple roots. The above approach allows
one to avoid this calculation.

7 Quantum dynamical R-matrices and
quantum groupoids

In this section we will give a " noncommutative geometric” interpretation of
the QDYBE which is analogous to the geometric interpretation of the CDYBE
given above. More precisely, to solutions of the QDYBE we will associate,
following [F],[EV2], a kind of quantum group, more precisely a Hopf algebroid
(or quantum groupoid).

The general notion of a Hopf algebroid was introduced in [Lu]. However,
here it will be sufficient to use a less general notion, that of an H-Hopf
algebroid, which was introduced in [EV2]. Our exposition will follow [EV2,
EV3].
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7.1. H-bhialgebroids. Tet H he a commntative and cocommmntative finitely
generated Hopf algebra over C, T' = Spec H the corresponding commutative
affine algebraic group. Assume that T is connected. Let M7 denote the field
of meromorphic functions on T'. Let us introduce the following definitions.

Definition. An H-algebra is an associative algebra A over C with 1, en-
dowed with an T-bigrading A = @, gerAas (called the weight decomposi-
tion), and two algebra embeddings py, p, 1 M1 — Ago (the left and the right
moment maps), such that for any a € 4,3 and f € My, we have

m(f(N)a = au(f(A+a)), w(f(N))a=au(f(A+0). (71)

A morphism ¢ : A — B of two H-algebras is an algebra homomorphism,
preserving the moment maps.

Example 1. Let Dr be the algebra of difference operators My — My, i.e.
the operators of the form Y . | fi(A\)7Ts,, where f; € My, and for S € T we
denote by 73 the field automorphism of My given by (73f)(A) = f(A + 5).

The algebra Dr is an exaniple of an H-algebra if we define the weight
decomposition by Dy = @®(Dr)as, Where (Dr)ag =0if a # 83, and (Dr)aa =
{fNT . f € Mr}, and the moment mars ju; = 1. : My — (Drlgo to be
the tautological isomorphism.

Example 2. This is a generalization of Example 1. Let W be a diagonal-
izable H-module, W = @xerW (A, W[A] = <w € W |au = A a)w, for alla €
H}, andlet D%y, C Home (W, W®Dr) be the space of all difference operators
on T with coefficients in End ¢(W), which have weight a € T with respect to
the action of H in W.

Consider the algebra Dy w = ©oDry. This algebra has a weight decom-
position Dy w = @ap(Dr,w)ap defined as follows: if g € Home (W, W ® My)
is an operator of weight 8 — «, then g']},’l € (Drw)ag.

Define the moment maps py, g, : My — (Drw )oo by the formulas g, (f()))
= F(N), m(f (X)) = f(A—h) where f(A=h)w = F(A—pwif w € W[, u € T.
The algebra Dy equipped with this weight decomposition and these moment
maps is an H-algebra.

Now let us define the tensor product of H-algebras. Let A, B be two H-
algebras and pf!, pu, pZ. 4B their moment maps. Define their matriz tensor

product, A® B, which is also an H-algebra. Let
(A®B)as := BpAap®nir Bas, (7.2)

where ®), means the usual tensor product modulo the relation p2(f)a®b =
a®@uf ()b, for any a € A,b € B, f € Mr. Introduce a multiplication in AQB
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by the rule (a®b)(a'®¥) = aa’®bb’. It is easy to check that the multiplication
is well defined. Define the moment maps for A®B by p*®5(f) = pf(f)®1,
1®5(f) =1@u7 (f). - _

For any H-algebra A, the slgebras AQDr and Dr®A are canonically
isomorphic to A. In particular. Dy is canonically isomorphic to Dy®Dr.
Thus the category of H-algebras equipped with the product & is a monoidal
category, where the unit object is Dr.

Now let us define the notions of a coproduct and a counit on an H-algebra.

Definition. A coproduct on an H-algebra A is a homomorphism of H-
algebras A : A — ARA.
A counit on an H-algebra 4 is a homomorphism of H-algebrase : A — Dr.

Finally, we can define the notions of an H-bialgebroid and an H-Hopf
algebroid.

Definition. An H-bialgebroid is an H-algebra A equipped with a coasso-
ciative coproduct A (i.e. such that (AQId4)oA = (Id48A)o A, and a counit
€ such that (e®Ids)o A = (Id4®¢€) o A =1d4.

Let A be an H-algebra. A linear map S: 4 — A is called an anticutomor-
phism of H-algebras if it is an antiautomorphism of algebras and g, 0 S =
e, pi 0 S = p,. From these conditions it follows that S(A4,3) = 4_5 ..

Let A be an H-Lialgebroid, and let A, € be the coproduct and counit of

A. Fora € A, let
Aa) =) a}®@al. (7.3)

Definition. An antipode on the H-bialgebroid A is an antiautomorphism
of H-algebras S: A — A such that for any a € A and any presentation (7.3)

of A(a), one has

> aiS(el) = lela)l). 3 Siai)al = mr(e(a)1),

where €(a)l € My is the result of the application of the difference operator
€(a) to the constant function 1.
An H-bialgebroid with an antipode is called an H-Hopf algebroid.
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Remarks. 1. If H = C then the notions of H-algebra, H-bialgebroid, H-
Hopf algebroid are the familiar notions of an algebra, bialgebra, and Hopf
algebra.

2. It is easy to see that Dy is an H-bialgebroid where A : Dy — Dy® Dy
is the canonical isomorphism and ¢ = Id. Furthermore, it is an H-Hopf
algebroid with S(D) = D*, where D* is the formal adjoint to the difference
operator D (i.e. (f(A\)7a)* = 7,7' f())). This H-Hopf algebroid is an analog
of the 1-dimensional Hopf algebra in the category of Hopf algebras.

3. One can define the notions of an H-algebra, H-bialgebroid, H-Hopf
algebroid if the group T is not connected (for example, a finite group), in
essentially the same way as above. More precisely, since in this case the
algebra Mr of meromorphic functions on 7 is not a field but a direct sum
of finitely many copies of a field, one should introduce an additional axiom
requiring that A,z is a free module over 4 (Mr) and g, Mr). Similarly, one
can make all the above definitions in the case when My is replaced with
another algebra of functions on T (rational functions, regular functions on
sonle open set, etc.)

7.2. Dynamical representations of H-bialgebroids. One of the reasons
H-bialgebroids are good analogs of bialgebras is that their representations,
like representations of bialgebrss, form a tensor category. However, these
representations are not the usual representations but rather new objects which
we call dynamical representations, and which we will now define.

Definition. A dynamical representation of an H-algebra A is a diagonaliz-
able H-module W endowed with a homomorphism of H-algebras my : A —
Drw, where Dy is defined in Example 2.

Definition. A homomorphism of dynamical representations ¢ : W, — W,
is an element of Homg¢ (W, Wo® Mr) such that @ o mw, (z) = mw,(z) o ¢ for
all z € A

Example. If A has a counit, then A has the trivial representation. W = C,
T =€

For diagonalizable H-modules W, U, let f € Hom(W, W®M7) and
g € Hom(U, U® My). Define f®g € Hom (WQU. WU Mr) as
(N = FOO = B®)(1@g(N) (7.5)
where fO(X = E®)(1 ®g(N)) w@u = f(A — p)w @ g(A)u if g(\)u € U[p).

Lemma 1 ([EV2]). There is a natural embedding of H-algebras
0wy DTJV@DT,U — Drwsy (an isomorphism if WU are finite dimen-
stonal), given by the formula fTs ®9Ts — (f®9)Ts.
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Now let us define the tensor product of dynamical representations for
H-bialgebroids. If A is an H-bialgebroid, and W and U are two dynamical
representations of A, then we endow the H-module WQU with the structure of
a dynamical representation via mygy (z) = Owyo(ruw®ny)oA(z). H f: Wy —
W5 and g : U} — Us are homomorphisms of dynamical representaticns, then
so is f®g: WU, —» Wo®U,. Thus, dynamical representations of A form a
monoidal category Rep(A4), whose identity object is the trivial representation.

Remark. If Ais an H-Hopf algebroid and V is a dynamical representation,
then one can define the left and right dual dynamical representations *V and
V*. We will not discuss this notion here and refer the reader to [EV2].

7.3. The H-bialgebroid associated to a function R: T — End (V® V).
Now, following [EV2], let us define an H-bialgebroid Ag associated to a
meromorphic, zero weight function R : T — End(V®V), where V is a
finite dilnensional diagonalizable H-module (we assume that R()\) is non-
degenersate for generic A). This is the dynamical analogue of the Faddeev-
Reshetikhin-Takhtajan-Sklyanin construction of a bialgebra from an element
R € End(V @ V), where V is a vector space.

By definition, the algebra A is generated by two copies of My (embedded
as subalgebras) and matrix elements of the operator L € End(V)®A4r. We
denote the elements of the first copy of My by f(A!) and of the second copy by
f(2?), where f € My, We denote by L,s the weight components of L with
respect to the natural T-bigrading on End(V), so that L = (L,g), where
L.s € Home(V[8],V[e])® Ag. B

Introduce the moment maps for Ag by w(f) = f(A?), u-(f) = f(0?), and
define the weight decomposition by

FON, F(®) € (Ar)oo.  Lap € Home(V(B], V[2]) ®(AR)ap
The defining relations for Ag are:
FO)Lag = Lagf(\' +@); f(X*)Lag = Lagf(O* + B); [f ('), (X)) = 0
and the dynamical Yang-Baxter relation
R2Z(ONMLBL? = LBLBRZ()\Y) ;. (7.6)

Here the :: sign means that the matrix elements of L should be put on the
right of the matrix elements of R. Thus, if {J,,} is a homogeneous basis of V,
and L =3 Ex®Lap, R(A)(va®v) = 3 R%(A)v.Qvg, then (7.6) has the form

S ORI LasTya =Y REO) Loy,

where we sum over repeated indices.
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Define the coproduct on Ap, A: Ap — Ap® Ap, and the counit of Ap by
A(L) = LL" €(Lap) = bapldvig ® T,
where Idy : V]a] = V[a] is the identity operator.

Proposition 7.1 ([EV2]). (Ag, A, €) is an H-bialgebroid.

Example. Suppose that R is the basic trigonometric solution of the QDYBE
(see Section 6). Then the defining relations for Az look like

FOLee = Ly f(A' + wp),
FOO®) Loe = Lo f(O + we),

ast()\Z)
LnsLn = —‘Ln Lnsa ta
e e
LysLo: = %Lns[’bsa a 7é b,
1- ﬂnb()‘l)
@ab(M) Las Lot — 0st(A2) Lot Lae = (Bes(A2) = Bab(M)) LasLarsa # bys # 8,
where ag(X) = %, Bab(X) = o Ab 1

We note that we don’t need any special properties of R (like the dynamical
Yang-Baxter equation or Hecke condition) to define the H-bialgebroid Ag.
However, if we take a "randomly chosen” function R, the H-bialgebroid Ag
will most likely have rather bad properties; i.e. it will be rather small and will
not have interesting dynamical representations. The simplest way to ensure
the existence of at least one interesting dynamical representation is to require
that R satisfies the QDYBE. This is so because of the following proposition.

i (W,nw) is a dynamical representation of an H-algebra A, we denote
7d : A — Hom(W, W ®M,) the map defined by n{(z)w = my (z)w, w € W
(the difference operator mu/(z) restricted to the constant functions). It is
clear that my is completely determined by ﬂ{’v.

Proposition 7.2. If R satisfies the QDYBE then Ag has a dynamical rep-
resentation realized in the space V, with 7%(\) = R()\).

This representation is called the vector representation.

However, even if R satisfies the QDYBE, the H-bialgebroid Az may not
be completely satisfactory. In particular, one may ask the following question:
does Ag define a "good quantum matrix algebra”? More precisely, does
the Hilbert series of Ag equal to that of the function ring on the matrix
algebra, i.e. (1—1)~%m(¥)*? In general, the answer is no, even if the quantum
dynamical Yang-Baxter equation is satisfied.
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In fact, here is the place where the Hecke condition comes handy. Namely,
we have the following proposition, which is a generalization of a well known
proposition in the theory of quantum groups (due to Faddeev, Reshetikhin,
Takhtajan).

Proposition 7.3 ([EVZ2]). Suppose that R satisfies the QDYBE and the
Hecke condition with g not equal to a nontrivial root of 1. Then the space Af
of polynomials of degree m in generators L,g in Ag is a free My ® Mrp-module,
and the ranks of these modules are given by

> rk(Apm = (1 - )™

mz0

Remark. The proof of this proposition, like the proof of its nondynamical
analog, is based on the fact that under the assumptions of the Proposition,
AT is a representation of the Hecke algebra. This justifies the name ” Hecke
condition”.

7.4. The H-Hopf algebroid Agz. Suppose now that Rsatisfies the QDYBE
and the Hecke condition where ¢ is not a nontrivial root of 1. In this case, it
turns out that, analogously to the nondynamical case, a suitable localization
Ag of Ag is actually a Hopf algebroid. Namely, define A by adjoining to
Ag a new element L™, with the relation LL™! = L~'L = 1. It is easy to see
that the structure of an H-bialgebroid on Ag naturally extends to Ag, and
it can be shown that Az admits a unique antipode S such that S(L) = L™,
This antipode equips Az with a structure of an H-Hopf algebroid. This H-
Hopf algebroid is a quantization of the group GL,, in the same sense as the
H-bialgebroid Ay is a quantization of the matrix algebra Mat,,.

7.5. Quasiclassical limit. In conclusion of the section, we would like
to explain why the H-Hopf algebroid Ag considered here (for the basic ra-
tional or trigonometric solution R of the QDYBE) should be regarded as a
quantization of the Poisson groupoid X, corresponding to the basic rational,
respectively trigonometric, solution r of the CDYBE (for the definition of X,
see Section 5).

To see this, consider the H-Hopf algebroid Az with T = bh* for some
finite dimensional abelian Lie algebra §, and M7 replaced with the ring of
regular functions on sonie open subset U of §*. Introduce a formal parameter
7 (like in Section 3), and make a change of variable A — \/v in the defining
relations for Ag. It is easy to see that the resulting algebra A}, over C[[v]] is
a deformation of a commutative algebra. The above result about the Hilbert
series implies that this deformation is flat, so the quotient algebra A% :=
A} /(v) obtains a Poisson structure. Let X be the spectrum of AY%; it is an
algebraic Poisson manifold. It is not difficult to show that the the moment
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maps, coproduct, comit, and antipode of 4g define maps s,¢, m, F,i (see
Section 5) for X, which equips X with the structure of a Poisson groupoid
with base U. Moregver, it is easy to check that the Pcisson groupoid X is
naturally isomorphic to X.

8 The universal fusion matrix and the
Arnaudon-Buffenoir-Ragoucy-Roche
equation

8.1. The ABRR equation. In [ABRR], Arnaudon, Buffenoir, Ragoucy
and Roche give a general method for constructing the universal fusion ma-
trix J(A), which lives in some completion of U,(g)®?, i.e the unique element
satisfying Jyw () = J(A)jvew for all V,W. A similar approach is suggested
in [JKOS], based on the method of [F]

Let U'(b1) be the kernel of the projection U(bs) — U(h). We use the
sanle notations with the index ¢ for the quantum analogs of these objects.
We set #(A) = A+ p— 33,72 € Ub where as usual p = 13 A ho and
(z;) is an orthonormal basis of h. Set Ry = Rg™X=®%, It is kncwn that
Ro €1+ Uy(by) @ Uy(b-).

Theorem 8.1 ([ABRR]). The universal fusion matriz J()\) of Uy(g) is the
unique solution of the form 1+ Uy(b_) ® U (b,) of the equation
JON(1 @ ¢*W) = RE (1 ©¢*N)J(N). (8.1)

The universal fusion matriz J(A) of U(g) is the unique solution of the form
1+ U'(b_)® U'(by) of the equation

O 1880 = () ea®ea)I(}) (8.2)

a€At

We will call tliese equations tlie ABRR equulions [or Uy(g) aud for g,
respectively.

Proof. Let us first show the statement about uniqueness. Let T()\) €
1+ Ug(b-) ® Uy(b,) be any solution of (8.1). Then

(RS)7'T(A) = Ad (1® ¢*V)T())
& ((R§H)™ = DT = (Ad (1@ ¢*™) —1)T()
& T() =1+{Ad (1®¢"Y) - 1) (R - VT
Now notice that ((R3')~' — 1) € Uj(b-) ® U;(b,). This implies that T())

cant be recusively constructed as follows. Sel To(A) = 1 and put

Tont(A) =1+ (Ad (1@ ¢®V) — 37 ((REHY™! = DT ().
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Then lim,, oo Tu(A) = T(A\) (the limit is in the sense of stabilization). In
particular there exists a unique solution to (8.1) of the given form.

The proof in the rational case (i.e in the case of a siniple Lie algebra g) is
similar. In that case, the recursive construction is given by To(A) =1 and

Ton(A) =1-2ad(1@ () ) Y e-a ®e)Tu(N).
acAt

We now give a proof that the fusion matrix J(\) actually satisfies the ABRR
relation in the case of simple Lie algebras. The proof in the case of quan-
tum groups is analagous but technically more challenging, and is given in
Appendix B.

Let C be the quadratic Casimir operator in the center of the universal
enveloping algebra Ug:

C=zz?+2p+2 Z €—afa-
i a€At

Then C acts on any highest weight representation of g of highest weight X\ by
the scalar (A, A +2p). Now let V, W be two finite-dimensional g-modules and
let v € V, w € W be two homogeneous elements of weight wt(v) and wt(w).
We compute the quantity

F(A) = (U3~ wa(v)-wtw): Pr-wi(e)(C ® 1) P3v1)
in two different ways. On one hand we have
F=(=wt(v),x = wt(v) +2p)J(\)(w @ v). (8.3)
On the other hand,
F = (85 _w(u)-we(wy 1 2((e-ata)s + (e-ata)2 + (€a ® €a)iz + (€-a @ €a)rz
+ o+ ) + ) (@) + (22 + 22 @ 7)1z} Y iy B30a).

Since ¥3_ 4 ()~wi(w) IS @ highest weight vector, it is clear that

(v;\—wt(v)—wt(w)! (E—aea)xd’f_m(.,)‘l’iv»
= (V3 —wt()-wi(w): (-2 ® €a)12P3_we(yPiva) = 0.

Moreover, by the intertwining property again, we have

(€a ® €-a)12P)_uwi(e; PAUA = —(€-ata)2 = (€-a ® €a)23P}_yi(n) PRV
(P14 P2) B3 ey P2V = = P3N PAUN + BN e () P2V,
(211 + (2D)2 + 2(: © Z:)12) B3 () P30
= —(2(2i ® T:)13 + 2(Ts ® Ti)oa+(27)3) P wen) PAVA + PR PR TT 0
= @f_m(v)ézzka+((zf)g = 2X3) P}y PR
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Summing up these equations, we finally obtain
F=(=20v+2(p,0) + O_afly - D + X =2 ) e_a®ea)J(A) (84)
i a€A+

Combining (8.3) and (8.4) yields

(D= = 200+ I I(N) = (W8(0)? = 200+ pwt())) I (A)

=-2()_ ea®el)J())

a€A+

which is equivalent. fo (R.2). ]

Example. Let us use the recursive procedure in the proof above to com-
pute J(A) for U(sly). Setting J(A) = 1 + Y5, J™(X) where J™()) €
U'(b-)[-2n] ® U'(b4)[2n], the ABRR equation reads

h?

%[1@((“1)11- 2.7 1] =~(f @),

which gives the recurrence relation
1@ ((A+1)n —nh +02)J™ = (=f @)™,

Hence
wyy = ED en g oy A _ .
IO = @ (A= h+ 27 (A= htn 1)

This formula and its quantum analogue were obtained in the pioneering paper
[BBB], which was a motivation to the authors of [ABRR).

8.2, Classical limits of fusion and exchange matrices. The ABRR
relations can also be used to derive the classical limits of the fusion (and thus
of the exchange) matrices. Setting ¢ = e™*/2, rescaling A — %f and considering
the limit v — 0 yields the following classical version of the ABRR, equation:

Ad1®@e™)j(A) - i) = Y e-a®ca,
a€At
which admits the unique lower triangular solution
, €_a®e€a
i) =- z - @N
a€At
From this we deduce
1 1 1
| — 20 a2 _ - d et _
r(A) = 2 +5(0) - 52(N) ZQ+2§>%cotanh (z(a, )\)) (ea®e_, —e_a®e,)

which is consistent with Proposition 3.3.
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The case of a simple Lie algebra g is completely analogous; the classical
version of the ABRR equation is

(), A®1 = D ea®ea,
a€At
which admits the unique solution
. e“ﬂ ® eﬂ
N== 2 T
a€At

This yields Corollary 3.1.

9 Transfer matrices and Generalized
Macdonald-Ruijsenaars equations

9.1. Transfer matrices. We first recall the well-known transfer matrix
construction.

Let A be a Hopf algebra with a commutative Grothendieck ring, and let
R € A® A be an element such that (A @ 1)(R) = R¥R%. A basic example
is: A is quasitriangular, R is its universal R-matrix.

For any finite-dimensional representation 7y : A — End V of A, set

Ty = 'D"v(ﬂ'v ® 1)(R) € A.
These elements are called transfer matrices.

Lemma 9.1. For any finite-dimensional A-modules V,\W we have TyTw =
TV@W =TwTy.

Proof. By definition we have
(mrvew @ DR = (ny @ mw @ 1) (AR )R = (my @ NRas(mw @ 11 Ra3,

which implies the first equality. The second equality follows from the com-
mutativity of the Grothendieck ring. ]

The transfer matrix construction gives rise to interesting examples of quan-
tum integrable systems which arise in statistical mechanics. For example, if A
is the quantum affine algebra or the elliptic algebra, one gets transfer matrices
of the G-vertex and 8-vertex models, respectively.
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We adapt the notion of transfer matrices in our dynamical setting in the
following way. Let g be a simple Lie algebra and let U,(g) be the associated
quantum group. For any two finite-dimensicnal U,(g)-modules V and W let
Ryw()) be the exchange matrix. It is more convenient to work with the
shifted exchange matrix R()\) = R(-X — p).

Let Fy be the space of V[0]-valued meromarphic functions on §*. For v € b*
let T, € End(Fy) be the shift operator (T}, f)(A) = f(X + v). As pointed out
in [FV3], the role of the transfer matrix is played by the following difference
operator

Dy = z Tryw ) (Ruwv (X)) T

v

It follows from the dynamical 2-cocycle condition for fusion matrices (see
Proposition 2.3) that for any U,(g)-modules U, V, W we have

Dggw = DgDﬁ/ = Dﬁ/Dg-
Hence {D{,} span a commuting family of difference operators acting on Fy.

9.2. Weighted trace functions. Let V be a finite-dimensional U,(g)-
module. Recall that, for any homogeneous vector v € V[v] and for generic
# € §* there exists a unique intertwiner @), : M, — M,_, @ V such that
(Ve BLUu) = v. Set

By = & @v* € Home(M,, P M, @ V| @ V*[-])),
veB v

where B is any homogeneous basis of V. Consider the weighted trace function
Yy(hp) = Tr (B4™) € V0] @ V(0]

where ¢?* acts on any h-semisimple U,(g)-module U by qflf‘["] = O [d. Tt
can be shown that ¥y € V[0] ® V*[0] ® ¢¥*C(¢*) ® C(g*). Let

84(N) = (T, (¢®)) ™ = ¢ 2% [T (1 - ¢723)

a>0
be the Weyl denominator, and sst
QM) =m?(1® ST (J(=A - p)),

where m? : Uy(g)@Uy(g) — Uy(9). a®b — ba and where J(A) is the universal
fusion matrix. It can be shown that Q(}) is invertible. Finally, set

Fy(h 1) = Q7 ()= Tv (X —pt = p)By(N).
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Theorem 9.1 ([EV4], The Macdonald-Ruijsenaars equations). For
any two finite- dimensional U,(g)-modules, we have

Dy Fr (0 ) = xw(a ™) Fv (A, p)
where xw(g®) = Y, dim W([v]g™"® is the character of W.

Theorem 9.2 ([EV4], The dual Macdonald-Ruijsenaars equations).
For any two finite-dimensional U,(g)-modules, we have

DRV Fy(Am) = xw(@d ) Fv(A, 1)

I thie above, we add a superscript o D o specily on which variable the
difference operators act. Thus, in Theorem 9.1, D};, acts on functions of the
variable ) in the component V [0}, and in Theorem 9.2, Dy}, acts on functions
in the variable x in the component V*[0).

From Theorems 9.1 and 9.2 it is not difficult to deduce the following result:

Theorem 9.3 ([EV4], The symmetry identity). For any finite dimen-
sional Uy(g)-module we have

FV(Aa /-‘) = Flj" (/": )‘):

where *: V(0] @ V*[0] = V*[0] ® V[0] is the permutation.

9.3. Relation to Macdonald theory. Let us now restrict ourselves to the
case of g = sl,,, and let V be the q-analogue of the representation S™*C". The
zero-weight subspace of this representation is 1-dimensional, so the function
¥y can be regarded as a scalar function. We will denote this scalar function
by Win(g, A, 1)

Recall the definition of Macdonald operators [Ma, EK1]. They are oper-
ators on the space of functions f(A,,..., Ap) which are invariant under simul-
taneous shifting of the variables, \; — X; + ¢, and have the form

2 _ t~l 2)\J'

t
M= ) Hﬁ Tr.

Ic{1....n}:ili=r \d€l,j¢i

where TjA; = X;if j ¢ I and Tth; = Aj+1if j € I. Here g,t are parameters.
We will assume that t = g™*!, where m is a nonnegative integer.

It is known [Ma] that the operators M, commute. From this it can
be deduced that for a generic 4 = (p1,....ptn), 2 i = 0, there exists a
unique power series fno(g, A, 1) € C[[g*? ™™, ... g™ **-1] such that the series
Fm(g, A1) := g*2H=mP) £ (g, A, ) satisfies difference equations

M, f(g, 2, 1) = ( z qZE'E’(MH’)i)fm(q: A p).
Ic{l,...n}:ijl|=r
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Remark. The series f,,o is convergent to an analytic (in fact, a trigonomet-
ric) function.
The following theorem is contained in [EK1].

Theorem 9.4 ([EK1], Theorem 5). One has

fm(q, )‘a /-‘) = A/m(q’ )‘)_l\pm(q—la _)‘$ #)a

where

MR HH(q,\, A g,

=1 I<j

Let Dy (g~!, —)) denote the difference operator, obtained from the opera-
tor Dy defined in Section 1 by the transformation ¢ — ¢~! and the change of
coordinates A — —X. Let A"C" denote the q-analog of the r-th fundamental
representation of si,.

Corollary 9.1.
DA"C" (q—la _)‘) = 6q()‘)'7m(qa )‘) o AJT o ’7m(qa )‘)—1611()‘)“1
Proof. This follows from Theorem 9.4 and Theorem 9.1.

Remark. In the theorems of this section, Verma modules A, can be re-
placed with finite dimensional irreducible modules L, with sufficiently large
highest weight, and one can prove analogs of these theorems in this situa-
tion (in the same way as for Verma modules). In particular, one may set

Vnlg, A p) = 'D’(‘I’V 22), where ‘I’ : Ly — L, ®V @ V*[0] is the intertwiner
with highest coefﬁc1ent 1 (Such an operator exists iff u —mp > 0, see [EK1]).
Then one can show znalogously to Theorem 9.1 (see [EK1]) that the function
Fml@ M 8) = (@, \) " W (g7}, =X, 1 + mp) is the Macdonald polynomial
P.(q,t,¢*) with highest weight x (¢ is a dominant integral weight). In this
case, Theorem 9.1 says that Macdonald’s polynomials are eigenfunctions of
Macdonald’s operatcrs, Theorem 9.2 gives recursive relations for Macdonald’s
polynomials with respect to the weight (for sl(2) - the usual 3-term relation
for orthogonal polynomials), and Theorem 9.3 is the Macdonald symmetry
identity (see [Ma]).

10 Appendix A: Classical dynamical
r-matrices on a simple Lie algebra g
with respect to [ C .

A.1. Iet g be a simple complex Lie algebra and [ a commutative subalgebra

of g consisting of semisimple elements. Then [ C § for some Cartan subal-
gebra ). We keep the notations of Section 1. In this appendix, we give a
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classification of all classical dynamical r-matrices [* — (g ® g)' with coupling
constant 1. Note that we can suppose without loss of generality that the
restriction of (, ) to [ is nondegenerate. Indeed, given a dynamical r-matrix
r:[* = (g®g)", we can always replace [ by the largest subalgebra of h under
which 7 is invariant, and this subalgebra is real.

A.2. Gauge transformations. Let (¥ € [* @ [+ (where the orthogonal
complement is in g) be the inverse (Casimir) element to the form ( , ). If
() = 32 + (p(\) @ 1), ¢ : I — End)(I*) is a meromorphic function with
values in (g ® g)', and if f : [* — § is any meromorphic function, set

() = %Q + (€M p(N)e* TN g 1)(Y.

Lemma 10.1. The iransformations r()\) — rf()) preserve the set of classical
dynamical r-matrices with coupling constant 1.

Two r-matrices which can be obtained one from the other by such a trans-
formation are called gauge-equivalent.

A.3. Classification of dynamical r-matrices. Let §) be a Cartan subal-
gebra of g, and let I C §* be a system of siniple roots in A. Let hy C b be
the orthogonal coniplement of [in §.

Definition. A generalized Belavin-Drinfeld triple is a triple (I', '3, 7) where
Iy, Ty C 11, and where 7 : T'y 5 I'y is a norm-preserving isomorphism.

Given a generalized Belavin-Drinfeld triple (I';, 'z, 7), We extend linearly
the map 7 to a norm-preserving bijection {I'}) — (I's), where (I') (resp.
(T'2)) is the set of roots & € A which are linear combinations of simple roots
from T'; (resp. from I';).

We say that a generalized Belavin-Drinfeld triple (I'y,I'5, 7) is l-admissible
if 7(a) —a € [* for all @ € I'y, if 7 satisfies the following condition: for every
cycle a - 7(a) > ... 77(@) = awe havea + 7(a) +... + 7" la € L.

I (I'1.T'g,7) is a generalized Belavin-Drinfeld triple, let gr,, gr, be the
subalgelbras generated by e,, fo & € 'y (resp. generated by e,, fo @ e Iy).
The map 7 : eq — €,(,), @ € I'y extends to an isomorphism 7 : gp, S or,
Finally, define an operator K : [' — Hom (gr,, g) by

K(A\)eqa = z e—"(“’;‘)T"(ea).

n>0

Notice that this sum is finite if 7 acts nilpotently on a.
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Theorem 10.1 ([S]). Let (I';,T2,7) be an [-admissible generalized Belavin-
Drinfeld triple.
(i) The equation

(@ = 7(a) @ liro = 2((7(0) + @) ® 1),

where Qy, C ho ® by is the inverse element to the form (, ), has solutions
To € Azbo.
(i) Let 7o € A%, satisfy the equation frem (i). Then

T(A) = %Q-{-To‘f‘ Z K(A)Ca/\fa‘*' E %Ca/\fa (101)

a€A+t a€At
eq€ Drl

is a classical dynamical r-matriz. Conversely, any classical dynamical 7-
matriz v : [* — (g ® g)' with coupling constant 1 is gauge equivalent to one
of the above form, for suitable choices of Cartan subalgebra §) containing |,
polarization of g and [-admissible generalized Belavin-Drinfeld triple.

Proof. Let us prove statement (i); statement (ii) is proved in [S]. Let [y,
be the Lie algebra of all z € § such that (& — 7(a),z) = 0, and let p be
the orthogonal complement of [in [, Then we have an orthogonal direct
sum decomposition o = p @ ... Let us regard 7y as a bilinear form on §
(via the standard inner product). The equation from (i) determines ro(z,y)
where z € [} . and y is arbitrary. To check that 79 can be extended to a

skew symmetric form, it suffices to check that it is skew-symmetric on ..
But using the equation from (i) we find that

1
ro(a = 7(a), 5 = 7(8)) = 1/2(a + 7(a). f = 7(8)) = 5((3,7(a)) = (&, 7(5)))
(we use that 7 preseves (,)), which is obviously skew symmetric. ]

Remarks. 1. This classification is very similar in spirit to the classification
of classical r-matrices 7 € g ® g satisfying r + r* = Q (quasitriangular
structures) obtained by Belavin and Drinfeld, and reduces to it for [ = 0 (see
[BD)).

2. When [ = § one recovers the classification result Theorem 4.2: the only
h-graded generalized Belavin-Drinfeld triples are of the form I'y = I', 7 = I'd,
and in this case the r-matrix (10.1) corresponds to r (), with X =T},.

3. Theorem 10.1 is proved in [S] under the additional assumption that [
contains a regular semisiniple element. However, the proof easily extends to
the present situation.
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11 Appendix B: Proof of the ABRR relation
for U,(g)

We keep the notations of Section 8. Recall the Drinfeld construction of
the quantum Casimir element of U,(g). Let R be the universal R-matrix for
U,(g). Let us write R = Y ,a; ® b; and set u = 3, S(4)a;. Then u = g%z
where z is a central element in a completion of U,(g), which is called the
quantum Casimir element. Moreover, for any p € §* we have

uvﬂ = q“ Zi Iugvp = q—(ﬂnﬂ)vp

hence zt, =q ®#!%y, and upy, =g ##'¥)g%

Now let V and W be two finite-dimensional U,(g)-modules, v € V and
w € W homogeneous vectors of weight p, and p,, respectively, and consider
the expectation value

X“”(I't) = (v;“ﬂv“ﬂw’ (I’;fw»uWn—nuq’;U#)'
We will compute X,,,(¢t) in two different ways. On one hand,
X”“’(/L) = (v;ﬁtu—uw’ (I);Lm-(quz)ff‘fn—nu ‘I’ﬁ”u)
= (v;—pu—pw’ Q::Llh-z”"n—n-u q(:/zpq);quvﬂ)
= q—(I‘—Fmﬂ“ﬂu+2p)q|2‘l/’q(2p,ﬂ) J(1)(w ® v)
= q~(n~nmn—nu)+2(p‘nv)quZP J(1)(w B v)
On the other hand, we have (1R AP)R = R'?>R!® hence, by the intertwining
property,
(1@A)(1®S)R = aa;® S(b) ® S(b;).

ij

Thus
XW'”‘) = E S(bj)'l/‘/(v;“l"u'_ﬂw’ S(bi)fl“in—nu—nw q):f“#ua"aﬂ‘”n—m—q):vi»'
ij
(11.1)
Now, since vy, _,, _, is a lowest weight vectcr and since

R € (1+ Uj(b_) ® Uj(b,))g=: ™=

equation (11.1) reduces to
* -2 - ¥ 7@,
Xow(n) = z S Vs UMy qM-I,,_,,‘,_,,w®VV®:f—p-u BjiM,u_ s, PpuVi)
Jj

(=, —p100)2 — T *
= gl i) E (S(by)grtrte );w(Un~uu~uw®;f—uv“ﬂMn—nv(I)ZUF>

J

(11.2)



124 Pavel Etinghof & Olivier Schiffmann
Using the relation
(A®S)R = a®ar 2 S(be)S(br)

we have

z S(b)w ® PLajm, = (z (S(bk)s(bl))tw ® ayps,_,, @ akgv) o,
ol

J
ie
( E Sh)w @ flqM,,_,,v)‘I’z = (Z Sh)w @ fl/qv)~l Z S(bj)w @ DLajin,-

Substitution of this in (11.2) gives

Xow(p) = g~ ¥ 7 (3™ S(be)w ® arw) " ge I (1) (w @ ) (11.3)

Claim: we have (£ S(b) ® a) ™' = (1 ®¢*)R(1® ¢°%).

Proof. We have S%(a) = g*aq™% for any a € U,(g). Hence 3 ax ® S(bs) =
(1®¢*)(1®S™')(1®q¢ ). The claim now follows from the relation

1S HR =R

Thus, combining (11.1) and (11.3), we get
q~(n~nu,u~uu+2p)q;/2”q2(""°)J (1) (w @)
=q*("“"”*"‘”)2q,2{|’, R2 q;w+pw—2(ﬂ+p)J(l_t)(w R v).
This implies that

— — 2 vtfw—
q (Ho—pw) RZlqﬁvﬂt 2(M+P)J(#)(w ®’U)

(11.4)
=q#2~2(u,ﬂu+uu-)q'—VZPqI—‘gqu(u,p)q~(u—uu,u~m-+2p) J(1)(w ® v)

Using the weight zero property of R, we can rewrite the Lh.s of this last
equation as
—- Y r®r; —y r} -2
RZI‘I:w%v® ‘iwz g I () (w @ v) (11.5)

Similarly, using the weight zero property of J(u), it is easy to see that the
right hand side is equal to

-2/ - 12
g Xt o g () = J () g * g, E ™ (w @ v) (11.6)

The ABRR equation now follows from (11.4), (11.5), (11.6) and the weight
zero property of J(u).
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12 Review of literature

In conclusion, we would like to give a brief review of the existing literature
on the dynamical Yang-Baxter equations. We would like to make it clear
that this list is by no nieans complete, and contains only some of the basic
references which are relevant to this paper.

The physical paper in which the dynamical Yang-Baxter equation was first
considered is [GN]; dynamical R-matrices are also discussed in [Fad1],[AF].

The classical dynamical Yang-Baxter equation and examples of its solu-
tions were introduced in [F]. Its geometric interpretation in terms of Poisson
groupoids of Weinstein [W] was introduced in [EV1]. Sclutions of this equa-
tion were studied and classified in [EV1], [S]. The relationship of solutions of
this equation to Poisson groupoids and Lie hialgebroids was further explored
in [LX] and [BK-S]. The relationship of solutions of the classical dynamical
Yang-Baxter equation (defined on noncommnutative Lie zlgebras) to equivari-
ant cohomology is discussed in [AM]. The relationship to integrable systems
is discussed in [ABB].

Quantum groups associated to a dynamical R-matrix were first introduced
in [F]. In the case when the R-matrix is elliptic, they are called elliptic
quantum groups. These quantum groups and their representation theory (for
the Lie algebras sl,,), as well as their relationship with integrable systems,
were systematically studied in [FV1, FV2, FV3]. The papers [EV2, EV3]
study the trigonomerric versions of these quantum groups (for any simple Lie
algebra).

Quantum groupoids were introduced by Maltsiniotis (in the case when
base is classical), and by Lu in [Lu] in the general case. The interpretation of
dynamical quantum groups as quantum groupoids was first discussed in [EV2,
EV3], and further studied in [Xul], [Xu2]. The interpretation of dynamical
quantum groups as quasi-Hopf algebras is contained in [BBB], and was further
developed in [Fr, JKOS], [ABRR],[EF]. The connection between these two
interpretation is discussed in [Xul].

Quantum KZB equations (which are not discussed in these notes) were
introduced in [F], and studied in [FTV1, FTV2, MV, FV3, FV4, FV5, FV6,
FV7]. Monodromy of quantum KZ equatious [FR], which yields dynamical
R-matrices of the elliptic quantum groups, is computed in [TV1, TV2).

The theory of traces of intertwining operators for Lie algebras and quan-
tum groups and its applications o the theory of special functions (in particu-
lar, Macdonald theoty) is developed in [B],[F ,[E],[EK1, EK2, EK3, EK4],[K1,
K2, K3], [EFK], [ES1, ES2]. The relationship of this theory with dynamical
R-matrices is studied in [EV4].
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QUANTIZED PRIMITIVE IDEAL SPACES AS
QUOTIENTS OF AFFINE ALGEBRAIC VARIETIES

K. R. GOODEARL

ABsTRACT. Given an affine algebraic variety V and a quantization Og (V) of
its coordinate ring, it is conjectured that the primitive ideal space of OyiV)
can be expressed as a topological quotient of V. Evidence in favor of this
conjecture is discussed, and positive solutions for several types of variesies
(obtained in joint work with E. S. Letzter) are described. In particular,
explicit topological quotient maps are giver. in the case of quantum toric
varieties.

INTRODUCTION

A major theme in the subject of quantum groups is the philosophy that
in the passage from a classical coordinate ring to a quantized analog, the
classical geoinetry is replaced by structures that should be treated as ‘non-
cominutative geometry’. Indeed, much work has been invested into the de-
velopment of theories of noncomimutative differential geometry and noncom-
mutative algebraic geometry. We would like to pose the question whether
these theories are entirely noncomimutative, or whether traces of classical
geonetry are to be found in the noncommutative geometry. This rather
vague question can. of course, be focused in any number of different di-
rections. We discuss one particular direction here, which was developed in
joint work with E. S. Letzter [6]; it concerns situations in which quantized
analogs of classical varieties contain certain quotients of these varieties.

To take an ideal-theoretic perspective on the question posed above, recall
the way in which an affine algebraic variety V is captured in its coordinate
ring O(V): the space of maximal ideals, max O(V), is homeomorphic to V,
under their respective Zariski topologies. In the passage from cominutative
to noncominutative algebras, the natural analog of a maximal ideal space
is a primitive ideal space — this point of view is taken partly on practical
grounds, because noncominutative rings often have too few maximal ideals
for varicus purposes, but also in order to reflect the ideal theory connected
with the study of irreducible representations. (Recall that the primitive

This research was partially supported by NATO Collaborative Research Grant 960250
and National Science Foundation research grants DMS-9622876, DMS-9970159.
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ideals of an algebra A are precisely the annihilators of the irredncible A-
modules.) Thus, given a quantized version of O(V), say Og(V'), the natural
analog of V is the primitive ideal space prim1 Og(V). The aspect of the
general problem which we wish to discuss here, ther, is that of finding
classical geonietric structure in prim Oy (V). and relating it to the structure
of V.

We report below on some success in expressing prim Og4(V') as a quotient
of V with respect to the respective Zariski topologies. Modulo a minor
technical assumption, this is done in three situations — when V is an alge-
braic torus, a full affine space, or (generalizing both of those cases) an affine
toric variety. We discuss these cases in Sections 2, 3, and 4, respectively;
we sketch some of the methods and indicate relationships among the three
cases. In particular, in the last section we establish precise formmulas for
topological quotient inaps in the case of quantum toric varieties, ;maps were
only given an existence proof in [6].

Recall that a map ¢ : X — Y between topological spaces is a topological
guotient map provided ¢ is surjective and the topology on Y coincides with
the quotient topology induced by ¢, that is, a subset C C Y is closed in
Y precisely when ¢~!(C) is closed in X. In that case, ¥ is completely
determined (as a topological space) by the topology on X together with the
partition of X into fibres of ¢.

Throughout the paper, we fix an algebraically closed base field k. All the
varieties we discuss will be affine algebraic varieties over k.

1. QUANTUM SEMISIMPLE GROUPS

We follow the usual practice in writing ‘quantuin semisimple groups’ as
an abbreviation for ‘quantized coordinate rings of semishnple groups’. Thus,
‘quantum SL,,’ refers to any quantization of the coordinate ring O(SL,(k)).
We begin by displaying the primitive ideal space of the most basic example,
the standard single parameter quantization of SL,.

1.1. Example. Consider the algebra O,(SLa(k)), where ¢ € k™ is a non-
root of unity. This is the k-algebra with generators X7, X2, X21, X22
satisfying the following relations:

XuXiz = ¢X12Xn1 XXz = qgXaXn X12X21 = X1 X2
X21X22 = qX22X21 X12X22 = ¢X22 X 12
XuXa — X22X11 = (g - g7 ) X2 X2 XXz —gXizXa1 =1

Since ¢ is not a root of unity, the primitive ideal space of Og(SLa(k)) is not
large, and can be completely described as follows:
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""""""" (X1 —a, X1z, X1, Xzg —a7h) - oo e
(a € k)

"""""""""""""""" (Xig = BXa1) s
(B ek)

With the Zariski topology, this space seems more like a scheme than an
affine variety, since it has many non-closed points. When taken apart as
pictured, however, it can be viewed as a disjoint union of four classical va-
rieties: two single points, and two punctured affine lines. Taken as a whole,
prim Og{S Ly (k)) can be related to the variety S La(k) via the following map:

& odt) = (X —a, X1z, Xo1, Xs2 —a™') (a2 k%)

5 o) = (Xiz} (a,v € k*)
(‘;,fil) = (Xa1} (o, 8 € k%)
(:g) — (X12 = B~ X21) (a,0 € k; B,y kX)
(ad-pBv=1)

We leave as an exercise for the reader to show that the map SLy(k) —
prim Og{S Ly (k)) given above is Zariski continuous; in fact, it is a topological
quotient map.

1.2. Letv G be a connected semisimple algebraic group over C, and let g €
C* be a non-root of unity. Quantized ccordinate rings of G have been
defined in both single parameter and multiparameter versions, which we
denote 0,(G) and O, »(G) respectively. We shall not recall the definitions
here, but refer the reader to [8], [9], [10], [12], [13], or [¢]. The first

classification results for primitive ideals in this context were proved in the
single parameter case:

Theorem. [Hodges-Levasseur, Joseph] There exists a bijection
prin Og(G) — { symplectic leaves in G },

where the symplectic leaves are computed relative to the associated Poisson
structure on G arising from the quantization.

Proof. This was proved for the cases G = SL3(C) and G = §L,(C) by
Hodges and Levasseur in (8, Theorem 4.4.1] and (9, T'heorem 4.2], and
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then for arbitrary G by Josepl {12, Theorem 9.2], [13, Theorems 10.3.7,
10.3.8]. O

Let us rewrite this result to bring in the points of G more directly: There
exists a surjection G —» prim Og(G) whose fibres are precisely the symplectic
leaves in G. In the multiparameter case, the situation is slightly more
conplicated, as follows.

1.3. Theorem. [Hodges-Levasseur-Toro| There exists a surjection G —»
prim Oy ,(G), but the fibres are symplectic leaves only for certain choices
of p.

Proof. The first statement follows from the results in {10, Section 4]; for
the second, see [10, Theorems 1.8, 4.18]. O

1.4. We can fill in a bit more detail about these surjections by bringing
in a group of symmetries. Let H be a maximal torus in G, acting on
O,,p(G) by ‘winding automorphisms’ (cf. [13, (1.3.4)]). For example, if

G =SLy(C) and H = {(" 0 ) | @ € C*}, then H acts on Og(G) so that

0a !

a 0 X X2} _ aX1 aXy2 . . .
(0 ot ) . (Xgl Xu) = (0—1X2| a—‘ng)' In this case. the induced action

of H on prim O4(G) has four orbits, which are the sets displayed in Example
1.1.

It follows from the analyses in 8, 9, 12, 13, 10] that

o The number of H-orbits in prim Og ,(G) is finite.

e Each of these H-orbits is Zariski homeomorphic to H modulo the rel-
evant stabilizer.

e The preimage of each H-orbit, under the surjection in Theorem 1.3, is
a locally closed subset of G.

These properties hint strongly that there is some topological connection
between G and prim O, ,(G).

1.5. Conjecture. There exists an H-equivariant surjection
G — prim O, ,(G)

which is a topological quotient map (with respect to the Zariski topologies).

If this conjecture were verified, then it together with knowledge of the
fibres of the map would completely determine prim O, .(G) as a topological
space.

In the case of O4(SL2(C)), the conjecture can be readily verified ‘by
hand’, as already suggested above. There is a further piece of evidence in
the SL3 case: Brown and the author have constructed an H-equivariant
topological quotient map B+ —» prim Oy(B*) where B* is the upper trian-
gular Borel subgroup of SL3(C} {Work in progress].
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The major diffienlty in the way of the con’ecture is that no good global de-
scription of the Zariski topology on prim Oy 5(G) is known, only the Zariski
topologies on the separate H-orbits.

In order to try to obtain a better feel for the problem, let us widen the
focus:

1.6. Conjecture. If O4(V) is a quantized coordinate ring of an affine
algebraic variety (or group) V, there exists a topological quotient map
V —» prim Og(V), equivariant with respect to an appropriate group of au-
tomorphisms.

Here Og(V) is meant. to stand for any quantization of (V), a phrase
which is only slightly less vague than the symbolism, since no definition
of a “quantization” of a coordinate ring exists. For descriptions of many
commonly studied classes of examples, see [4].

In the remainder of the paper, we discuss soine cases where the extended
conjecture has been verified.

2. QUANTUM TORI

The simplest case in which to examine our conjecture is that of a quanti-
zation of the coordinate ring of an algebraic torus. The parameters required
can be arranged as a matrix q = (¢i;) € M,(k™) which is mullipiscatively
antisymmetric, that is, g; = 1 and g;; = q{jl for all 4,j. (These conditions
are assumed in order to avoid degeneracies in the resulting algebra.) The
guantum torus over k with respect to these parameters is the algebra

Og((K)™) == k(z¥', ..., 2T | ziz; = qsjzjz; for all i, 7).

The structure of this algebra has been analyzed in various cases by many
people, among them McConnell and Pettit [15], De Concini, Kac, and Pro-
cesi [3], Hodges [7], Vancliff [16], Brown and the author [2], Letzter and the
author [5], and Ingalls |11]. In particular, it is known that prim Og((k*)™)
and spec Og((k*)™) are homeomorphic to the maximal and prime spectra,
respectively, of the center Z(Oqi(k*)™)), via contraction and extension, and
that the center is a Laurent polynomial ring over k (e.g., [5, Lemma 1.2,
Corollary 1.5]).

2.1. Theorem. [6, Theorem 3.11] For any multiplicatively antisymmetric
matrix q € M, (k*), there exist topological quotient maps

(k%)™ — prim Og((k*)")
spec k[yi™, ..., yx"] — spec Oq((k*)"),
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equivariant with respect to the natural actions of the torus (k*)*. O

This case, in many ways, works out too smoothly to really put Conjecture
1.6 to the test. In that regard, the case of quantum affine spaces is much
more interesting. Before moving on to that case, however, we describe the
forim of the maps in Theorem 2.1, since this will preview essential aspects
of the quantuin affine space case. We procead by rewriting quantum tori as
twisted group algebras, as follows.

2.2. Fix a quantum torus A = Og((k*)"). Set I' = Z", and define o :
I' x I' — k* by the rule

n

a(a,8) = [] 4%

ig=1

Then o is an alternating bicharacter on I', and it determines the commuta-
tion rules in A, since z%zf = o(a, 3)zPz° for all a,3 € T, where we have
used the standard multi-index notation z® = z{'z3?---z3». Recall that
the radical of o is the subgroup

rad(o) ={a €T |o(a,-) =1}

of I'. It plays the following role: Z(A) = k[z® | a € rad(o)] (cf. [5, Lemma
1.2] or [11, Proposition 5.2)).

Now choose a 2-cocycle ¢ : I' x I' = k* such that c(a, 8)c(B,a)"! =
o(a,3) for a, 8 € T. (This can be done in many ways — see [1, Proposition
1, p. 888] or [6, (3.2)], for instance.) We may identify A with the twisted
group algebra k°T', that is, the k-algebra with a basis {z, | @ € '} such
that

ToZg = (@, B)Ta+p

for a,8 €.
Let us write the group algebra kT in terms of a basis {y, | a € T'}, where
Ya¥p = Ya+p for a,3 € I'. There is a k-linear (vector space) isomorphisim

. : A=kl

such that ®;(z,) = yo for a € I'. While this map is not multiplicative, it
satisfies @.(zazg) = c(a, 8)@c(zo)Pc(zg) for o, 8 € T (cf. [6, (3.5))]).

The final ingredient needed to describe the topological quotient maps in
the current situation is the torus A = (k*)™ and its natural actions on
A and KT by k-algebra automorphisms. The induced actions of H on the
primme and primitive spectra of A and kI" will also be required. We identify
H with Hom(T', k), which allows us to write the above actions as

h.z, = h(a)zq and h.yo = h{Q)yo
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for h € H and v € T. Observe that the map &, is H-equivariant. The
identification H = Hom(T', k*) provides a pairing H xI' — k*, and we use
L to denote orthogonals with respect to this pairing. In particular,

St ={h€H|kerh2S}

for SCT.

2.3. It is convenient to have a commpact notation for the intersection of the
orbit of an ideal under a group of automorphisms. If P is an ideal of a ring
B, and T is a group acting on B by ring automorphisius, we write

(P:T) =) P).

teT

This ideal can also be described as the largest T-invariant ideal of B con-
tained in P. The same notation can also be applied to any subset of B.

2.4. Theorem. (6, Theorem 3.11] Let A = Og((k*)™), and fixT',0,¢,®., H
as above. Assume that c =1 onrad(o) xI'. (Such a choice for ¢ is always
possible; cf. [6, Lemma 3.12].) Then the rule P — ®(P : rad(e)'), for
prime ideals P of kT', defines H-equivariant topological quotient maps

spec kI' —» spec A and max kI’ —» prim A.

The fibres of the second map are exactly the rad(o)*-orbits in maxkI. O

2.5. As the formula in Theorem 2.4 indicates, the given maps are coin-
positions of two maps, which themselves have nice properties. To express
this in more detail, write S = rad(o), and recall that an S‘-prime ideal
of kT is any proper S*-invariant ideal Q such that whenever Q contains a
product of §+-invariant ideals, it must contain one of the factors. Denote
by S+-speckI’ the set of S+-prime ideals of kT, and observe that this set
supports a Zariski topology (defined in the obvious way). The first map in
Theorem 2.4 can be factored in the form

spec kI' - §*-spec kT’ = spec A,

where the map P +— (P : §1) from spec kT to S*-speckI is a topological
quotient map, and the map Q — ®71(Q) from S+-speckl to spec A is a
homeomorphism. That P — (P : §1) is a topological quotient map is an
easy exercise (cf. [6, Proposition 1.7] for a generalization); the bulk of the
work in proving Theorem 2.4 goes into establishing the homeoniorphisin
S*t-spec kI" = spec A (cf. [6, Proposition 3.10]). The key point is that the
hypothesis on ¢ ensures that @, is ‘central-semilinear’, that is, ®.(za) =
®.(2)®P.(a) for z € Z(A) and a € A [6, Lemma 3.5].
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The factorization above respects maximal and primitive ideals in the fol-
lowing way. Let S*-max kT denote the set of maximal proper §*-invariant
ideals of kI; this is a subset of S*- spec kI, which we equip with the relative
topology. Then we have the factorization

max kI' —» §*- max kI’ = prim A,

where P — (P : §1) gives a topological quotient map from max kI to
St-max kT, and Q — ®!(Q) gives a homeomorphism from §+- max kI" to
prim A (cf. [6, Propositions 3.9, 3.10)).

3. QUANTUM AFFINE SPACES

Let q € M,(k*) again be a multiplicatively antisymmetric matrix. The
corresponding quanium affine space over k is the algebra

Oq(k™) :==k(z\,...,zn | z:x; = gsjz;z; for all 4, 7).

3.1. Denote the algebra Og(k*) by A for purposes of discussion. The torus
H = (k*)™ again acts naturally as k-algebra automorphisms on A. The
primitive spectruin of A consists of 2™ H-orbits, which we denote prim,, A,
indexed by the subsets w C {1,...,n} [5, Theorem 2.3|. Here

prim, A= {P €primA | z; € P < i € w}.
Siiilarly, spec A is a disjoint union of 2™ subsets
spec, A= {P €specA|z; € P <<= icw}

Each spec,, A is homeomorphic, via localization, to the prime spectrum of
the quantuin torus

A= (Al(x: i € W)l | ¢ wl.

and likewise prim,, 4 is homeomorphic to prim 4,, (cf. [5, Theorem 2.3)).

The partition prim A = | |, prim,, A is a quantum analog of the standard
stratification of affine n-space by its H-orbits. To emphasize the parallel,
we label the H-orbits in k™ as

(k™) = {(@1,...,00) €K™ |a; =0 <> i € w},

forw C {1,...,n}. It follows from Theorem 2.1 that there are H-equivariant
topological quotient niaps

(k™)w —» prim A,, = prim,, A

for all w. The problem is then to patch these maps together coherently.
Modulo a minor technical assumption, that can be done:
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3.2. Theorem. [6, Theorem 4.11] Let q = (g;;) € M,(k*) be a multiplica-
tively antisymmetric matrix. Assume that either —1 ¢ (g;;) or chark = 2.
Then there exist topological quotient maps

k™ — prim Og (k™)
speck(yy, ..., Yn] = spec Og(k™),
equivariant with respect to the natural actions of the torus (k*)*. O

Here {g;;) denotes the subgroup of k* generated by the g;;.

To describe the maps in the above theorem, and identify the fibres of
the first, we use a setup analogous to that in the quantuin torus case. In
particular, we write Oq(k™) as a twisted semigroup algebra with respect to
a suitable cocycle.

3.3. Fixa quantum affine space A = Og(k"). SetI' = Z" and I't = (Z1)",
and define o : I'xI" — k* asin (2.2). As in the previous case, o determines
the commutation rules in A.

Next, choose a 2-cocycle ¢ : I' x I' = k* such that c(a, 8)c(B.a)"! =
o(a,B) for a,8 € T. We identify A with the twisted semigroup algebra
k°T'* with a basis {z, | @ € I'*}, and we write the corresponding semigroup
algebra R = kI'* in terms of a basis {y, | @ € I'*}. There are partitions
spec R = | ], spec, R and max R = | ] max, R analogous to those for
spec A and prim A.

Again as before, identify the torus H = {k*)™ with Hom(T', k*), so that
the natural actions of H on A and kI'* are given by

h.z, = h{a)zy and h.yo = h(a)yq-

3.4. It is convenient to identify the localizations A,, with subalgebras of the
twisted group algebra k°T", and to identify the corresponding localizations
R, of R with subalgebras of the group algebra kI'. This is done as follows:
Aw= Y kzo and Ry= Y kya=kly,
a€ly, a€ly

where ', = {a €T | a; = 0 for i € w}. {Here we have extended the z,
and the y, to I'-indexed bases for k°I" and kI'.) As in {2.2), there is an H-
equivariant k-linear isomorphism ® = @ : k" — kI such that ®&(z,) = vy,
for a € I". This map restricts to H-equivariant k-linear isomorphisms from
A onto R and from A, onto R, for each w.

Next, let 0., and ¢, denote the restrictions of ¢ and c to I',. Then the
identification above can be restated as A, = k°vI',,. We shall need the
radical of o,,, and we emphasize that this is a subgroup of I'y,. Thereisa
natural pairing between I',, and a quotient group of H, but it is more useful
to take orthogonals with respect to the pairing of H aud I'; thus, we write

rad(o,,)" = {h € H | kerh D rad(o.,)}-
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3.5. Theorem. [B, Theorem 4.11] Let A = Og(k™), and assume that either
—1 ¢ {gi;) or chark = 2. FixT,o0,c,®, H,0, as above. Assume that c is
an alternating bicharacter on T with ¢ = o and such that c(a.8) = 1
whenever o(a, 8) = 1. (Such a choice for c is possible by [6, Lemma 4.2].)
Then there are H-equivariant topological quotient maps

speckI't —»specA  and  maxkil'* — prim A

such that P — ®~'(P : rad(0,)*) for P = spec, kI'". The fibres of the
second map over points in prim,, A are exactly the rad(o,,)*-orbits within
max,, kI't. O

While the precise forimula given for the maps in Theorem 3.5 is particu-
larly useful for computations, it may round out the picture to give a global
formula (independeut of w), as follows.

3.6. Lemma. Let ¢ : spec kI'* —» spec A be the topological quotient map
given in Theorem 3.5. For all P € spec kI'*, the prime ideal ¢(P) € spec A
equals the largest ideal of A contained in the set ®~'(P).

Proof. We shall need the generators y; = y., € kI'* and z; = z., € A,
where €, ..., €, is the standard basis for T

Let P € spec kI'*; then P € spec,, kI't for some w. First suppose that
P € max,, kI'*. Then ¢(P) € prim,, A, and so ¢(P) is a inaximal element of
spec,, A [5, Theorem 2.3]. Now ¢(P) contaius the ideal J,, := (z; | i € w).
On the other hand, the multiplicative set generated by {y; | j ¢ w> in kI'*
is disjoint from P, and ®~! sends elements of this set to scalar multiples
of elements in the multiplicative set X, generated by {z; | j ¢ w} in A.
Hence, ~!(P) is disjoint from X,

Let I be the largest ideal of A which is contained in ®~!(P). Then
Juw C ¢(P) C I and I is disjoint from X,,. Hence, I/J, induces a proper
ideal, call it JA,, in the localization A, = (A/J,)[X;!]. Let M be a
maximal ideal of A, containing IA,,, and let @ be the inverse image of
M under the localization map A — A/J, — A,. Then Q € spec, A and
¢(P) €I C Q. Since ¢(P) is maximal in spec,, A, we obtain ¢(P) = Q and
thus ¢(P) = I. Therefore the lemma holds for P € max,, kT'*.

Now consider an arbitrary P € spec,, kI'*. Since kT'* is a commutative
afline k-algebra, P is an intersection of maximal ideals. It follows easily, as
in [2, Proposition 1.3(a)], that P = (), P, for some maximal ideals P, €
max,, kI'*. (Namely, P = ﬂvg (n} Q. where each @, is an intersection of
maximal ideals from max, kI'*. Observe that Q, = kI'* when v 2 w, and
that @, 2 P when v 2 w. Consequently, P = Q,,.) Siuce the set functions
(- : rad{o,,)*) and ®~! preserve intersections, we see that ¢(P) =, ¢(P;)
and ®~1(P) =), ®~1(F,). By the previous paragraph, each ¢(P,) is the
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largest ideal of A contained in ®~1(P,). Therefore ¢(P) is the largest ideal
of A contained in ®~}(P). O

3.7. The maps in Theorem 3.5 have analogous factorizations to those in
(2.5), which we write

spec kI't — G -spec kI't = spec A
max kI't - G-max kI't = prim A.

Here G stands for the indexed family of groups {S% | w C {1,...,n}} where
Sw = rad(oy,), while

G -speckl'™ = U {(P:52)| P € spec,, kI'*}
wC{l,...,n}

G-max k't = U {(P:82)| P € max, kI'"}.
wC{l,...,n}

Closed sets for Zariski topologies on G-speckI'* and G-max kI'* are de-
fined in the usual way; a compatibility condition on the groups in G ensures
that the result actually is a topology [6, (2.4), (4.9)]. A fairly general piece
of commutative algebra, developed in [6, Section 2|, provides the topo-
logical quotient maps from spec kI'* and max kI'+ onto G-speckI'* and
G -max kI't. The homcomorphisms of G spec k't and G -max k't onto
spec A and priim A are constructed by patching together homeomorphisins
of Si-speckl',, and St-max kT, onto spec A,, and prim A,, obtained as
in (2.5).

3.8. Example. To illustrate the form of these topological quotients, we
give the basic example in dimension 3, where various differences between
the classical and quantum cases appear. Recall that the single parameter
quantum affine spaces, relative to a scalar ¢ € k*, are the algebras

Oq(k™) = k(z\, - - ., Zn | Tiz; = gzjz; for i < j}.

(a) Assume first that g is not a root of unity, and let p be a square root
of ¢ in k. In this case, the topological quotient mmap

k® ~ maxk(Z*)® —» prim Og (k%)

described in Theorem 3.5 can be computed as follows [6, (5.2)], where the
scalars ); are all assumed to be nonzero:

(0,0,0) — (z,, z2, x3) (M1, 22,0) — (z3)
(A1,0,0) > () — Ay, z2, x3) (A 1,0, 23) — (z2)
(0,22,0) = (z), 2 — Az, z3) (0, Mg, A3) — (z1)
(0,0.23) = (zy, T2, Z3 — Az) (A1, A, A3) = Dot Tz — pA AsTo)
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The right. colnmn demonstrates hoth the compression effect. of the quotient.
process and the fact that Og(k®) has ‘many fewer’ primitive ideals than
O(k®). Note the factor p in the last term. Without this factor, we obtain
only a surjective map, which is not Zariski continuous.

(b) For contrast, consider the case where ¢ is a primitive {-th root of
unity for some odd ¢t > 1, and take p = ¢(**'¥/2. Then the topological
quotient map k* — prim Og(k*) has the form below [6, (5.3)):

(Ua Oa 0) Land (1)1, Iz, 1}3) ()‘la )‘2$0) Land (ztl - )‘ia 1); - )‘é’a 1}3)
(A1,0,0) = (z1 — A1, 22, 3} (A1,0,23) — (zf — Af, 2, T§ — A3)
(0,22,0) > (z1, T2 — Az, 3} (0,22,23) — (z1, 25 — Aj, 5 — Ag)

(05[)) A3) — (zl’ T2, T3 — A3:’

(A1, Az, A3) = (2} — AL, 25 — A5, 2§ — A%, Xz 123 — pA A3zs)
In this case, prim O, (k®) is more ‘classical’, in that all its points are closed.

4. QUANTUM TORIC VARIETIES AND COCYCLE TWISTS

In this section, we discuss quantizations of toric varieties [11] and extend
Theorem 3.5 to that setting. There are several ways in which (affine) toric
varieties mmay be defined. For our purposes, the simplest definition is a vari-
ety on which a torus acts (morphically) with a dense orbit. Somne equivalent
conditions are given in the following theoren.

4.1. Theorem. [14, Satz 5, p. 105] Let H be an algebraic torus, acting
morphically on an irreducible affine variety V. The following conditions are
equivalent:

(a) There are only finitely many H-orbits in V.

(b) Some H-orbit is dense in V.

(c) The fixed field k(V)H = k.

(d) All H-eigenspaces in k(V') are 1-dimensional. O

For comparison, we state a ring-theoretic version of this theoremn. Since
it will not be needed below, however, we leave the proof to the reader.

4.2. Theorem. Let R be a commutative affine domain over k, and let H
be an algebraic torus acting rationally on R by k-algebra automorphisms.
Then the following conditions are equivalent:

(a) There are only finitely many H-orbits in max R.

(b) Some H-orbit is dense in max R.

(c) (Fract R)¥ = k, where Fract R is the quotient field of R.

(d) All H-eigenspaces in R are 1-dimensional.
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(e) There are only finitely many H-invariant prime ideals in R.

In the nonconunutative setting, consider a prime, noetherian, affine k-
algebra R, let Fract R be the Goldie quotient ring of R, and replace the
maximal ideal space by prim R. The conditions of Theoren 4.2 are no longer
equivalent, since prim B may well have a dense point (if 0 is a primitive
ideal). It is thus natural to focus on the stronger conditions, (c) and (d).

Following Ingalls [11], we define a quantum (affine} toric variety to be
an affine domain over k equipped with a rational action of an algebraic
torus H by k-algebra automorphisins, such that the H-eigenspaces are 1-
dimensional. If we fix H and require the action to be faithful, such algebras
can be classified by elements of A2H togethgr with finitely generated sub-
monoids that generate the character group H [11, Theorem 2.6].

Quantum toric varieties may also be presented as ‘cocycle twists’ (see
below) of coordinate rings of classical toric varieties, analogous to the way
quantum tori and quantum affine spaces are twisted versions of (Laurent)
polynomial rings. Furtherimore, quantum toric varieties can be written as
factor algebras of quantuin affine spaces, which shows, in particular, that
they are noetherian. It also allows us to apply Theorem 3.2 and express
their primitive spectra as topological quotients of classical varieties. For this
purpose, a presentation as a cocycle twist of a commutative affine algebra
suffices; one-dimmensionality of sigenspaces is not needed. Hence, we can
work with a somewhat larger class of algebras than quantun toric varieties.

4.3. Suppose that R is a k-algebra graded by an abelian group G, and that
c: G X G — k¥ isa 2-cocycle. The underlying G-graded vector space of
R can be equipped with a new multiplication %, where r % s = ¢(a, 8)rs for
all homogeneous elements r € R, and s € Rz. This new multiplication is
associative, and gives R a new structure as G-graded k-algebra, called the
twist of R by c (see [1, Section 3| for details). The following alternative
presentation is helpiul in keeping computations straight. Let R’ be an iso-
morphic graded vector space copy of R, equipped with a G-graded k-linear
isomorphism R — R’ denoted 7 — 7/. Then R’ becomes a G-graded k-
algebra such that r’'s’ = c(a, 8)irs)’ for r € R, and s € Rg. The twist map
7 +— 7’ then gives an isomorphism of the twist of R by ¢ onto R’.

Now suppose that R is a commutative afline k-algebra, that G is tor-
sionfree, and that either —1 is not in the subgroup of k> generated by the
image of ¢ or char k = 2. Then there exist topological quotient maps

specR »specR’ and  maxR —» prim R

[6, Thecrem 6.3]. We shall show that these maps can be given by formulas
analogous to those in Theorem 3.5.

It is convenient to inunediately nake a reduction to a special choice of
c. First, we can replace G by any finitely generated subgroup containing
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the support of R. Then, as in the proof of {6, Theorem 6.3], there exists an
alternating bicharacter d on G. satisfying the same hypotheses as ¢, such
that R’ is isomorphic to the twist of R by d. Thus, there is no loss of
generality in assuning that c is an alternating bicharacter, and we shall
describe the topological quotient maps above under this assuinption.

The torsionfreeness hypothesis on G is only needed for the reduction just
indicated. Hence, we drop this assumption in the discussion to follow.

4.4. To recap, we are now assuining that R is a commutative affine k-
algebra graded by an abelian group G, that ¢ : G xG — k* is an alternating
bicharacter, and that either —1 ¢ (imc) or chark = 2. Let A = R’ be the
twist. of R hy r.

Choose homogeneous k-algebra generators ry,...,7, for R, and set a; =
i € Afori = 1,...,n. We use these elements to define sets spec,, R,
spec,, A, max, R, prim, A for w C {1,...,n} along the same lines as in
(3.1). Thus

spec, R={P €specR|r; € P = i€ w}
spec, A= [P €specA|a; € P+ i€ w},

while max,, R = (iax R) N (spec,, R) and prim,, A = (prim A) N (spec,, A).
Of course, some of these sets may be empty.

Set. H = Hom((G, k*), an abelian gronp under pointwise mnltiplication.
Because R and A are G-graded k-algebras, H acts on themn by k-algebra
automorphisms such that h.r = h(z)r and h.a = h(z)a for h € H, r € R,
a € A;. Note that the sets spec,, R and spec,, A are invariant under the
induced H-actious, since the elenents r; and a; are H-eigenvectors.

Fori=1,...,n, let §; € G denote the degree of r; and a;. For w C
{1,...,n},set G, = Zi¢w Z4; and let c,, denote the restriction of ¢ to G,
By definition of H, we have a pairing H x G — k*, and we use * to denote
orthogonals with respect to this pairing. In particular, for each w we can
define rad(c,,)*, which is a subgroup of H.

We can now state the following more precise version of [6, Theorem 6.3]:

4.5. Theorem. Let R be a commutative affine k-algebra, graded by an
abelian group G. Let ¢ : G X G — k™ be an alternating bicharacter, and
let A = R’ be the twist of R by c. Assume that either —1 ¢ (imc) or
chark = 2.

With notation as in (4.4), there exist H-equivariant topological quotient
maps

¢s : spec R — spec A and ¢m : max R —» prim A

such that P — (P :rad(c,)*) for P € spec,, R. Alternatively, ¢5(P) is the

largest ideal of A contained in P’. Moreover, the fibres of ¢, over points
in prim,, A are precisely the rad(cw)l-orbits in max, R.
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Note that the second deseription of ¢, shows that this map depends only
on R, G, and c, that is, it is independent of the choice of homogeneous
generators r; € R as in (4.4).

The proof of Theorem 4.5 will be distributed over the following three
subsections.

4.6. Let ® : A — R be the inverse of the twist map; this is a G-graded
k-linear isomorphism. In particular, X’ = ®~!(X) for subsets X C R.

Set T = Z™ and I'* = (Z*)*, and let p : I' — G be the group ho-
momorphism given by the rule p(a;,...,a;) = a16) + -+ + apd,. Set
é = co(p x p), which is an alternating bicharacter on T, as is ¢ = 2. For
a=(a1,...,a,) €'*, define

=771 TRt € Ryay and  ao = (1) € Ap(qy.

Then aaap = &a, B)aa+p for o, 8 € r+.

Next, set R = kTt and A = kT, expressed with k-bases {y,} and
{zo} such that yoys = Yat+p and zazs = &, f)Taqsp for a, 8 € T'+. Let
& : A > R be the inverse of the twist map; this is a I'-graded k-linear
isomorphism such that @(za) = y, for a € T'*. There exist surjective
k-algebra maps 7 :R > Randw: A — A such that T(Ya) = 7 and

7(To) = aq for a € I'*. Thus, we obtain a commutative diagram

:oz
M

R~—3——14

Let H = Hom(T'. k™), acting via k-algebra automorphisms on A and R
in the usual way. For w C {1,...,n}, define spec,, A _Spec,, R I’,,,, Aw,
Ruw, Ow, & as in (3.1), (3.3), i3. 4) (To define spec,, A and spec,, R, for
instance, use the elements z., = A and Ye, € R where €;,..., €, denotes
the standard basis for I'.) Because of our hypotheses on c, the group (im ¢)
contains 1o elements of order 2, and hence rad(o,,) = rad(é,,) for all w. We

set §w = rad(&y).
Now Theorem 3.5 gives us H-equivariant topological quotient maps

53 : SpeC R spec A and am : max B — prim/?

such that P — &~1(P : §$) for P € spec,, R. Moreover, the fibres of ¢m
over points in prin, A are the SE-orbits in max,, R.
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Set V={Pe specR| P Dker7} and W = {P € spec A | P D kern}.
The proof of [6, Theorem 6.3] shows that & and ¢, restrict to topological

quotient maps V. —» W and V' N maxR -» W N prlmA. Therefore there
are topological quotient maps ¢, and ¢, such that the following diagrams
cominute:

spec R — spec A maxR——— > prim A
< < < c
V———— W VNAmaxR——>> WNprimA
! =! 7! !
spec R —_— . spec A max R S R prim A

It remains to show that ¢, and ¢, have the properties announced in the
statement of Theorem 4.5.

Given any P € spec R, we have 77}(¢,(P)) = ¢3(7'_1(P)), which by
Lemma 3.6 equals the largest ideal of A contained in ®~'7~Y(P). If I is
an ideal of A contained in P’ = ®~(P), then #~(7) is an ideal of A
contained in #7'®~1(P) = 171 (P). Hence, n~1(I) C 7~ (¢s(P)), and
so I C ¢4(P). This shows that ¢s(P) is the largest ideal of A contained in
P

The following lemma records some facts and conditions that we shall
need to finish the proof.

4.7. Lemma. Letw C {1,...,n}, and set S,, = rad(c,).
(a) kert C (r~Y(P) : §5) C h(r~1(P)) for P € spec, R and h € S&.
(b) (h.(=))oT=T10o((hp).(-)) forhe H.
(c) p~Y(Sw)NTy =S, and so p(S,,) = S

(d) (hp)(v~1(P)) = T_](h(P)) for P € spec,, R and h € Sz.

(e) § St = p*(St )L, where p* : H — H denotes the homomorphism

gzven by composition with p.

(f) For P € spec,, R, the set {t1(h(P)) | h € S%} equals the Si-orbit
of T71(P).

Proof. (a) Note that 7=1(P) € spec, R and ¢,(r~}(P)) € W. Thus
O~ Y77(P) : S) D kerw, and so (77}(P) : SE) D ker7. The remain-
ing inclusion is clear.
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(b) This follows from the observation that
h1(ya) = hr®™ = hp(a)r® = 7(ho()yo) = T7((hp)-Yu)

for h€ H and a € T*. 5

(c) Observe that p(T'y,) = Gy. Since S, € G, and §,, C I'y,, the second
part of the claim will follow from the first. Now consider an arbitrary
element v € I',. Then p(y) € Sy if and only if c(p(7),-) =1 o G, =
p(Ty), if and only f é(y, =) =1on Ty, if and only if 7y € Se-

(d) It is clear from part (b) that 7(hp)(r~'(P)) = h(P). Since h € SL
and p(S.,) = S, (part (c)), we have hp € SL, whence ker7 C (hp)(r~!(P))
(part (a)). Part (d) follows.

(e) Since Sw C T, it is clear that T't C §L. As in the proof of part (d),
it is alsc clear that p*(S2) C St

Now consider &' € §$, thus S, C kerh’. Hence, &' induces a homo-
morphism h; : I'/ S, — k*. Inview of part (c), the restriction of p to Ty,
induces an isomorphism p,, : I'y/ §w — Gu/Sw- Let hy : Gy — k™ denote
the composition

Gu 2 GofSu 25 Tof8 S T/8 24 1%,
and observe that the restrictions of hep and k' to I',, coincide. Since k
is algebraically closed, k™ is a divisible group, and hence k* is injective
in the category of abelian groups. Consequently, 2 can be extended to
a homomorphism hz € H. On one hand, hzp and b’ agree on I',, whence
k' (h3p)~! € T'L. Onthe other hand, S, C ker hy C ker 3, whence b3 € S2.
Therefore b’ € p*(SL)T'L, and part (e) is proved.

(f) If h € SL, then hp € SL and we see from part (d) that 7= (A(P))
lies in the Si-orbit of 7=1(P).

Conversely, consider &’ € S&. By part (e), ' = (hp}hy for some h € SE
and hg € T'E. We claim that hg leaves 771 (P) invariant; it will then follow
from part (d) that ¥ (771(P)) = =1 (h(P)).

Since P € spec,, R, we see that 7!(P) contains the ideal J,, = (y., |
i € w), where €,..., €, denotes the standard basis for I'. Note that J,,
is invariant under H. Since ﬁ/ Jw is spanned by thg cosets y, + J., for
a € T,,NT'*, we see that the induced action of I’j‘, on R/J,, is trivial. Thus
771(P) is indeed invariant under hg, which establishes part (f). O

4.8. (Proof of Theorem 4.5) Let w C {1,...,n}, and consider P € spec,, R.
In view of Lemma 4.7(a) and the commutative diagrams in (4.6), we see that

65(P) = 76y(r71(P)) = 7®~}(r7}(P) : §y)
=@ 'r(r7N{P) : §5) = (r(r7H(P) : 55)) .
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On the other hand, TLemma. 4.7{f) implies that

(r"HP): 8Ly = ) M R(P) =77(P: S5),

heSE

whence 7(r "1 (P) : §5) = (P : 5%). Therefore ¢,(P) = (P : SLY.

Since H is abelian, the set functions (- : S%) are H-equivariant, as is
the twist map (—)’. Hence, it follows from the formula just proved that ¢,
is H-equivariant.

Finally, note that the fibre of ¢, over any point of prim,, A is contained
in max,, B. Consider P, P’ € max,, R. Taking account of (4.6), we see that
dm(P) = ¢m(P’) if and only if ¢ (77H(P)) = ¢m(r 71 (P’)), if and only if
7=1(P) and 7= (P’) lie in the same S.-orbit. By Lemma 4.7(f), this occurs
if and only if 771(P’) = 771 (h(P)) for some h € S, and thus if and only
if P and P’ lie in the same St-orbit. O

Once the precise form of the maps in Theorem 4.5 is given, we can easily
construct topological quotient maps between different cocycle twists of R,
as follows.

4.9. Corollary. Let R be a commutative affine k-algebra, graded by an
abelian group G. Let ¢y,c : G X G — k* be alternating bicharacters, and
let A; be the twist of R by c¢;. Assume that either —1 ¢ (imc;) U (imcg)
or chark = 2. Set H = Hom(G, k), and let ¢; : specR —» spec A; be the
H -equivariant topological quotient map given in Theorem 4.5.

Assume that co(z,y) =1 = cy{(z,y) =1, for any z,y € G. Then there
exists an H-equivariant topological quotient map ¢ : spec Ay — spec Ag
such that the following diagram commutes:

PR
spec R ¢
¢z spec Aqy

Proof. Set up notation for A; and ¢; as in (4.4), and abbreviate (¢;)., by
Ciw- Let ®; : A; — R be the inverse of the twist map. Then ¢; is given by
the rule

é:(P) = &7 (P : rad(ciw)t) for P € spec,, R.

Our hypotheses on ¢;, ¢ imply that rad(cg.,) C rad(c;,,) for all w, whence
rad(cz.)* D rad(c,,)t and so

(P : rad(czw)™) = ((P : rad(ciw)™t) @ rad(czw)*)



148 K. R. Goodearl

for all P € spec,, R. Hence, we can define a map ¢ : spec A; — spec A;
such that

#(Q) = &;7(2:1(Q) : rad(czw)*)
for @ € spec,, A;. It is clear that ¢¢; = ¢2. Since ¢; and ¢, are H-

equivariant topological quotient maps, so is ¢. O

11.
12.

13.

14.

15.

16.
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REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS IN
POSITIVE CHARACTERISTIC AND QUANTUM GROUPS
AT ROOTS OF UNITY

IAIN GORDON

1. INTRODUCTION

1.1. If A is a finitc dimensional algcbra then its blocks arc in onc to onc
correspondence with its primitive central idempotents. The aim of this paper
is to study this interaction for a class of noetherian algebras arising natu-
rally in representation theory. This class includes the universal enveloping
algebra of a reductive Lie algebra in positive characteristic and its quantised
counterpart, the quantised enveloping algebra of a Borel subalgebra and the
quantised function algebra of a semisimple algebraic group at roots of unity.

1.2. More generally this paper is concerned with the role the centre of these
algebras plays in their representation theory. The techniques used fall into
two categories: local and global. The local approach is concerned principally
with the behaviour of certain finite dimensional factors of these ncetherian
algebras whilst the global approach focuses on general properties of these
algebras. The aim in both cases is to understand the structure of these finite
dimensional factor algebras. In the first case we use a little deformation
theory to piece things together whilst in the second case we can use some
geometric tools before passing to the factors.

1.3. In Section 2 we introduce the class of algebras we wish to study and
present some general properties these have in common. In the following three
sections we apply this theory to the study of enveloping algebras and quan-
tised enveloping algebras of Lie algebras and to quantised function algebras.
We end with an appendix on the structure of the centre of a quantised Borel
algebra. Most of this paper surveys results from the articles [5] and [6]. The
approach to Theorem 3.6 using deformation theory is new whilst several re-
sults in Section 5 tie up loose ends from [6].

I am grateful to the organisers of tae Durham Symposium on Quantum Groups for the
opportunity to talk to the conference and to a submit a paper to the proceedings. I have,
as always, benefitted from conversations with Ken Brown. 1 also thank Gerhard Réhrle for
uscful discussions. Financial support was provided by TMR grant ERB FMRX-CT97-0100
at the University of Biclefeld.
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2. GENERALITIES

2.1. Throughout K denotes an algebraically closed field. We consider a
triple of K-algebras
RCZCH

where H is a prime Hopf algebra with centre Z and R is an affine sub-Hopf
algebra of H over which H (and hence Z) are finitely generated modules. We
have four examples in mind.

(A) Let K have positive characteristic p and let g be a finite dimensional
restricted Lie algebra over K. Then H is U(g), the enveloping algebra of g,
and R the p-centre of H.

(B) Let K = C, let g be a finite dimensional semisimple Lie algebra over
C and let € € C be a primitive £" root of unity, for £ an odd integer greater
than 1. Then H is the quantised enveloping algebra U.(g) and R the f-centre
of H.

(C) Let K, g and ¢ be as above. Then H is US?, the subalgebra of U.(g)
corresponding to a Borel subalgebra of g, and R the f-centre of H.

(D) Let K = C, let G be a simply-connected, semisimple algebraic group
over C and let £ be as above. Then H is O[G], the quantised function algebra
of G, and R the f-centre of H.

2.2. It is straightforward to show that there is an upper bound on the di-
mension of the simple H-modules, namely the PT degree of H, {4, Proposition
3.1]. In particular, each simple H-module is annihilated by a maximal ideal
of R. As a result the family of finite dimensional algebras

{i : m a maximal ideal in R}
mH

captures an iniportant slice of the representation theory of H: each simple
H-module is a simple module for exactly one algebra in this family.

2.3. To firm up this notion of a “family of finite dimensional algebras” recall
the following definition of the variety of n-dimensional algebras over K, [19).
Let
Bil(n) = { bilinear maps m.: K™ x K™ — K"} = A"
and
Alg(n) = { associative, bilinear m which have an identity} C Bil(n).

It can be shown that Alg(n) is an affine variety, locally closed in Bil(n).

Let Q(R) be the quotient field of R and let Q(H) = H ®z Q(R). Since H
is a finitely generated R-module there is an integer n such that Q(H) is an
n-dimensional @Q(R)-module.

Lemma. Let n be as above. There is a morphism of varieties
o : Maxspec(R) — Alg(n),
sending m to H/mH.
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Proof. By [35] our hypotheses in 2.1 ensure that H is a free R-module of
rank n. Let {z),...,z,} be a basis for H over R and define cfj € R for
1 < 4,3,k < n by the following equations,

_ z : k
IiL; = C,’j-'lf'k-
k

For any maximal ideal, m, of R the structure constants of H/mH with respect
to the basis {z; + mH} are given by the scalars (cf; + m) € R/mR= K. It
follows that a is a morphism of varieties, as required. a

In 2.2 we could have equally considered the family of algebras {H/MH :
M a maximal ideal of Z}. This family, however, does not behave very well in
general since the extension Z € H need not be flat. For instance in examples
(A), (B), (D) and often in (C) the presence of singular points in Maxspec(Z)
prevents flatness since H has finite global dimension, [4].

2.4. Miiller’s Theorem. The first result on the block structure of the alge-
bras H/mH is a striking analogue of the finite dimensional case.

Theorem. The blocks of H/mH are in one-to-one correspondence with the
mazimal ideals of Z lying over m.

(From now on we write Bj; to denote the block of H/(M N R)H corre-
sponding to M.
Remark. This rcsult first appears in a different and more general context in
(28, Theorem 7]; the interpretation here is discussed in [5, 2.10].

2.5. There is also a result on the local level about the number of blocks of

H/mH.
Proposition. [19, Proposition 2.7] Let s € N. The set

X = {m € Maxspec(R) : H/mH has no more than s blocks}
is closed in Maxspec(R).

2.6. There is one type of block that is controlled by Z, a block corresponding
to a point on the Azumaya locus of H:

Ay = {M € Maxspec(Z) : By; has a simple module of maximal dinlension}.
This definition is not standard, but under the hypotheses of 2.1 is equivalent
to the usual notion, see [5, 2.5].

Proposition. [5, Proposition 2.5] Let M be a mazimal ideal of Z belonging
to Ay and let m = M N R. There is an algebra isomorphism

Zy )
By = Mat, | ——
M (mZM
where Zy;/mZy; is the primary component of Z/mZ associated to M.

Recall a block is primary if it has a unique simple module. The proposition
shows that blocks corresponding to Azumaya points are primary.
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2.7. Being Azumaya is a generic condition, that is Ay is a dense open set in
Maxspec(Z), [34, Section 1.9]. Under the hypotheses of 2.1 Ay is contained in
the smooth locus of Maxspec(Z), [4, Lemma 3.3]. In sufficiently well-behaved
situations the converse holds.

Theorem. [4, Theorem 3.8] Suppose H has finite globa! dimension. If
codin(Maxspec(Z) \ Ay) > 2
then Ay equals the smooth locus of Maxspec(Z).

It is not true in general that Maxspec(Z) is Azumaya in codimension one,
[6, Proposition 2.6].

2.8. We finish this section with a comparison of Z/mZ and Z(H/mH) for
m € Maxspec(R). Quite generally there is an homomorphism

Z H

Lemma. The map ¢ is generically an isomorphism. Moreover, if K has
characteristic zero then it is always injective.

Proof. The morphisin 7 : Maxspec(Z) — Maxspec(R) is finite since Z is
a finitely generated R-module. Since finite morphisms are closed the set
Fu = Maxspec(R) \ m(Maxspec(Z) \ Ay) is a dense open set ccntaining
precisely those maximal ideals, m, of R whose fibre 7 ~!(m) is contained in Ay.
It follows from Proposition 2.6 that for any m € Fy we have an isomorphism

H _ z
(1) ﬁ =~ Mat, ('ﬁ) .

proving the first claim.

Now suppose that K has characteristic zero. Then there is a Z-module
map, the reduced trace, Tr : H — Z splitting the inclusion, [33, 9.8 and
Theorem 10.1]. Thus Z is a direct summand of H and so mH N Z = mZ for
all m € Maxspec(R), as required. a

2.9. Under the hypotheses of 2.1 the algebras H/mH are all Frobenius, [20,
Theorem 3.4].

Lemma. (13, cf. 1.3.9] Suppose that H/mH is a symmetric algebra. Then
dim(soc(Z(H/mH))) > the number of simple H/mH-modules.

In particular, if L(ZjmZ) is self-injective then v is surjective only if all blocks
of H/mH are primary.

Proof. Write A for H/mH. Let {S),...,Si} be a complete set of represen-
tatives for the isomorphism classes of simple A-modules and let P; be the
projective cover of &; for 1 < i < ¢. Since Morita equivalence preserves syni-
metry and the centre of an algebra, [2, Volume I, Proposition 2.2.7], without
loss of generality we may assume that A is basic.
The homoniorphism
0,’ . Pi — Si — P,
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defines an element in A = Ends(®F;)°P. Write an arbitrary element of A as
f =3, siidp + f' where f'is a radical morphism. Then, by construction,
0;f = X\yi0; = f6;. In particular §; is central and lies in the socle of Z(H/mH).

Let Z' = «(Z/mZ) and decompose Z’ into primary components. By hy-
pothesis each of these is self-injective and so Frobenius, {1, Example IV.3].
In particular each component has a simple socle. Suppose that Z’ = Z(A).
If S; and S; belong to the same block of A then 8; and 6; belong to the same
primary component of Z’, contradicting the simplicity of the socle. (]

Remark. Let K have positive characteristic p and let [ be the Heisenberg
Lie algebra over K, that is the Lie algebra with basis {z,y,2} such that
[z,y] = z and z is central. Let H = U(l) and R = Z = K[z, 2P,y?]. Let m =
(z,z¥,y*)Z, a maximal ideal of Z. Then H/mH is a truncated polynomial
ring, showing that the converse of the second claim is false in general. This
also shows that in general not all primary blocks are Azumaya.

2.10. The following proposition provides a partial adjunct to Lemuma 2.9.
Proposition. [19, Proposition 2.7] Let s € N. The set

Y, = {m € Maxspec(R) : dim Z(H/mH) > s}
is closed in Maxspec(R).

3. ENVELOPING ALGEBRAS

3.1. We follow the notation used in [25]. Let G be a connected, reductive
algebraic group over K, an algebraically closed field of positive characteristic
P, and let g = Lie(G). We assume that G satisfies the following hypotheses:

(1) The derived group DG of G is simply-connected:

(2) The prime p is good for g;

(3) There exists a G-invariant non-degenerate bilinear form on g.
More details can be found in [25, Section 6]. Let T C B = U.T be a maximal
torus contained in & Borel subgroup of G and let §h = Lie(T'), n = Lie(U)
and b = Lie(B). Let X be the character group of T and let A = X/pX. Let
® be the set of roots associated with g and let ®* be set of positive roots
corresponding to the choice of B. Let W be the Weyl group of G. We will be
interested only in the “dot action” of W on X (and hence on A). By definition
this is just an affine translation of the natural action of W on X. Given a
K-vector space V, let V1) denote the twist of V along the automorphism of
K which sends X to )P,

3.2. Being the Lie algebra of G, g has a restriction map z — zP, We have
a triple

20 CZCU(g)
where U(g) is the enveloping algebra of g and Zy = K[zP —zlP : z € g] is the
p-centre of g, a central sub-Hopf algebra of U(g). Standard arguments with
the PBW theorem imply that Z, = O(g*(")), the ring of regular functions on
g*( and that U(g) is a free Zy-module of rank p¥™9_[25 Proposition 2.3].
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Thus U(g) satisfies the hypotheses of 2.1. By Lemma 2.3 we have a morphism
of varieties

a: g=«(l) N Alg(pdimg)

sending X to the algebra U, = U(g)/(z? — 2P — x(z)), a reduced enveloping
algebra. Note that if x = 0 then Up is the restricted enveloping algebra of g.
It is straightforward to check that Uy, = U, for g € G acting on g*® by the
coadjoint action, [25, 2.9].

3.3. Hypothesis 3.1.3 yields a G-equivariant isomorphism 6 : g*") — g,
In particular, given x € g*™ let y = 0(x) and write y = ys + yn, the Jordan
decomposition of y in g. Then x = x; + xn Where x; = 87} (y;) and x, =
87 (yn). We call x = xs + Xxn the Jordan decomposition of x.

Let 35{x) = {z € 9: x([z,9]) =0} and Zs(x) = {g € G : g.x = x>. Under
the hypotheses in 3.1 we have that Z¢(x,) is a connected, reductive algebraic
group such that 34(xs) = Lie(Z¢(xs)) and Zg(xs) satisfies 3.1.1,3.1.2, and
3.1.3, [25, 6.5 and 7.4]. Note that x can be considered as an element of

30(X8)*(l)-

3.4. Reduction Theorem. It is reasonable to be concerned mostly with al-
niost simple G and simple g. The following reduction theorem in conjunction
with 3.3, however, justifies the general hypotheses of 3.1.

Theorem. [37, Theorem 2|, [18, Theorem 3.2] Let x = xs + xn € g*V) be
the Jordan decomposition. Let d = %(dim G.xs). Then there is an algebra
isomorphism

Ux(g) = Matye (Ux, (30(X5))) -

3.5. Thanks to Theorem 3.4, without loss of generality we can work under
the hypothesis x = x5 + xn Where 34(xs) = g. Since there is a finite number
of nilpotent orbits in g, [21, Chapter 3], the classification of simple g-modules
essentially becomes a finite problem.

3.6. Blocks of U(g). Recall that we consider the dot action of the Weyl
group Won A = X/pX.
Theorem. Let x be as in 3.5. Then U, has |A/W]| blocks.

Proof. Let N = {n € g*™ : 6(n) nilpotent} C g*! be the nilpotent cone in
g*(. By 3.5 affine translation N’ — X, + A\ is a G-equivariant isomorphism
of varieties. In particular y, — A is irreducible and has a unique dense
orbit consisting of regular elements, that is of elements whose centraliser
has minimal dimension, [21, Chapter 4]. Moreover, every G-orbit in x, + N
contains ¥, in its closure, [31, Theorem 2.5].
Let
O = {n € xs + N : U, has [A/W| blocks}.

Clearly © is G-stable and by Proposition 2.5 O is locally closed in x, + N.
By [25, Section 10] O contains both x; and the regular orbit. The result
follows. a
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This theorem first appeared in [5], confirming a conjecture of Humphreys
in [22]. The proof given in [5], however, was based on Miiller’s Theorem, 2.4,
and less representation theoretic than the sbove. Moreover the case p = 2
was omitted.

Henceforth we write

U. x = @ BX,)\‘
AN/ W
We often abuse notation by writing B, » for A € A or even X € X.

3.7. Baby Verma modules. Let x = x. + xn € ") be as in 3.5. We can
assume without loss of generality that x(n) =0, [25, Lemma 6.6]. Then any
element X € A givesrise to K, a one dimensional representation of U, (b), a
reduced enveloping algebra of the Lie algebra of b. Indeed, by [25, 11.1] and
[5, 3.19] there is a W-equivariant isomorphism

A= {xeh*: Ah)? — A(hP)) = x(h) for all k € B}.

The induced module V,(A\) = Uy @y, (v) K», a baby Verma module, plays an
important role in the representation theory of U,. For instance it follows from
(25, 10.11) and Thecrem 3.6 that V,()) belongs to a block of U, and further
that we can choose the labelling of blocks such that V,()) belongs to B, .
In particular V,()) and V, (we)) belong to the same block for all w € W.

3.8. Primary Blocks. We can describe when a block B,  is primary.
Proposition. Assume that p # 5 if R is of type E7. Then the block B, » is
primary if and only if it corresponds to an Azumaya pomt of Maxspec(Z).

Proof. Sufficiency follows from 2.6. For the converse, let A € X and suppose
that L is the unique simple module in the block B, ) and let P(L) be its
projective cover. By [23, B.12(2)] we have
dim P(L) = pV[W.(A + pX)[[Vi(N) : L],
where N = |@*|, the number of positive roots. On the other hand, by [23,
C.2], there is a projective B, y-module P such that
dim P = pN|W.A|.
We deduce that for p € W + pX
[Wep

[We(u + pX)|
Moreover [V, (u) : L] = p* since V,(u) belongs to B, . So we must find an
element 1 € WX + pX which forces i to be zero.

Arguing as in [23, H.1 Remarks] we can assume without loss of generality

that G is almost simple.
Let

(2) V(1) : L] divides

Co={D€eX:0<{M+p ') <plorall € &}
and
Ch={AeX:0<(A+p,BY) <pforall e d*}.
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Since Cp is a fundamental domain for the dot action of the affine Weyl group
W x pX on X, we can assume without loss of generality that . € Cp. By [23,
C.1 Lenma] if p € Cf then |W.u| = [We(p+ pX)| and so, by (2),i =0 as
required. By [23, H.1 Proposition], if & is not exceptional then we can choose
u € C} finishing the proof. Hence we need only consider the case p € Cp \ Cj)
and @ exceptional. In particular if p is prime to the order of W then (2)
forces i = 0. The only remaining cases are p = 5 and ® of type Eg, E7 or,
Eg and p = 7 and @ of type E; or E3. A case-by-case analysis shows that
the only possible exception to ¢ = 0 occurs when ¢ has type E7, p = 5 and
p = w3 + wy (where we’ve followed the numbering of [3]). O

3.9. The previous proposition has a consequence for the structure of the
centre of U,. This phenomenon was observed in the case y = 0 by Premet
and noted in [5, 3.17].

Corollary. Suppose that p # 2 and that p # 5 if ® has a component of type
Ey;. Then the centre of U, is isomorphic to Z/m,Z if and only if x is reqular.

Proof. By [36] and (18, 1.2] the algebras U, are symmetric. By [5, Theorem
3.5(4)] Z is a complete intersection ring (this is where we require p # 2), so
in particular Gorenstein. By [5, Theorem 3.5(6)] Z is a free Zy-module so,
since Zjp is smooth, standard commutative algebra implies that each factor

Z{myZ is Gorenstein, or, in other words, self-injective. Premet has proved
the following, (32|,

the natural map ¢ : Z/m,Z — Z(U,) is injective.

The result follows from Lemma 2.9, Proposition 3.8 and [5, Proposition 3.15].

3.10. Example. Let G = SLy(K) where K has odd characteristic. If x
satisfies the condition in 3.5 then either x is regular nilpotent or x = 0. The
algebra U, has (p+1)/2 blocks, labelled by the set of integers {—1,0,...,(p—
3)/2}. In all cases the block corresponding to —1 is associated with a simple
projective module, the Steinberg module, and is isomorphic to Mat,(K). If x
is regular then B, ; & Mat,(K[X]/(X?)) for 0 < ¢ < (p — 3)/2. This follows,
for instance, from [5, Proposition 3.16]. If x = 0 then it is shown in [16] that
for 0 < i < (p — 3)/2 the block By; is Morita equivalent to the path algebra
of the quiver

with relations ad = 8y = 0; da = v8 = 0; ay = (86; ya = 683, an eight-
dimensional algebra. In this case the centre of the block is spanned by the
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linearly independent elements 1,ay and ya. In particular we have

. -1 3p—-1
dim Z(Uo) = 3 (”T) +1= pT,

whilst dim Z/moZ = p.

3.11. Let’s conclude with a number of remarks.

1) The structure of Z/m,Z is known, [27]. To the best of my knowledge,
however, the structure of Z(U,) is, in general, unknown.

2) Proposition 3.8 completes the classification of blocks of finite representa-
tion type begun in 29]. Indeed, thanks to [15, Theorem 3.2], any block of
finite representation type is uniserial so in particular primary. Then Proposi-
tion 3.8 tells us that the block is Azumaya. Consequently the results in [29)]
and [5] can be applied.

3) The structure of Z has a number of further consequences for the represen-
tation theory of U thanks to Theorem 2.7 which is valid in this situation, [4,
Theorem 4.10] and [5, Theorem 2.9.1]. In particular see [5, 3.11 and 3.13].

4. QUANTISED ENVELOPING ALGEBRAS

4.1. 'We follow the notation of [11]. Let G be a simply-connected, semisimple
algebraic group of rank 7 over C and let g = Lie(G). Let B* be a Borel
subgroup of G and let B~ be the Borel subgroup opposite to B* in G. Let
T = B*NB~, a maximal torus of G, so that B* = T.U%. Let W = Ng(T)/T
be the Weyl group of G.

Let € = C be a primitive £** root of unity where ¢ is an odd integer greater
than 1 and prime to 3 if G has a component of type Gs.

4.2. Let Uc(g) be the simply-connected quantised enveloping algebra of g at
a root of unity ¢, as defined in [8]. In particular U.(g) is a Hopf algebra. We
have a triple

ZO g Z g Ue(g)a

where Z, is f-centre of U(g), a central sub-Hopf algebra generated by the ¢th
powers of certain generators of U(g), [8]. Then Uc(g) is a free Zp-module of
rank €979, Thanks to Lemma 2.3 we have & map

Maxspec(Zo) — Alg(£4m9)

where x € Maxspec(Z)) is sent to U .

Remark. The algebra U.(g) is not the quantised enveloping algebra consid-
ered by Lusztig in [26]. Lusztig’s algebra is a quantum analogue of the hy-
peralgebra of g whilst U(g) is a quantum analogue of the enveloping algebra
of g. However the reduced quantum group of Lusztig, a finite dimensional
sub-Hopf algebra of Lusztig’s quantised enveloping algebra, is isomorphic to
a skew group extension of the algebra U, ), where 1 € Maxspec(Zp) is the
augmentation ideal of Zj.
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4.3. The structure of Z; is well-understood, [8]. In particular there is an
unramified covering of degree 27

7+ Maxspece(Zo) = (U™ x UY)» T — B™B* C G.

Moreover, given ¥ € (U~ XU*)XT there exists x = xuXxs € U~%T = B~ such
that m(x.)m(xs) is the Jordan decomposition of #(x) in G and U, = U. 5.

4.4. The algebra U.(g) can be defined as the specialisation of an integral form
of Uy(g). the quantised enveloping algebra of g at a transcendental parameter
g. As a result we can find a central subalgebra Z;, C U(g), the specialisation
of the centre of Uy(g).

Theorem. |11, Section 21] The algebra Z is a complete intersection ring and
there is an isomorphism Z = Zy®z,nz, Z1. Moreover, Z is a free Zy-module
of rank {".

4.5. Blocks of Uc(g). Theorem 4.4 allows us to determine the structure of
the algebra Z/m,Z for x = xu¥s € B, [5, Theorem 4.5]. In particular we
find that the primary components of Z/m,Z are in natural bijection with the
elements of R, = {t € T : t! € Wx2}/W. Theorem 2.4 gives the following
result.

Theorem. [5, Theorem 4.8] Let x = xuXxs € B~ be as above. Then the blocks
of Uex naturally correspond to elements of R, .

If we have x5 = 1 then R, = {t € T : t! = 1}/W and we have the quantum
analogue of Theorem 3.6.

4.6. We conclude with a number of remarks.

1) There is an analogue of Theorem 3.4 for the algebras U, , which shows that
the classification of the simple U.(g)-modules is a finite problem, [7]. The re-
duction theorem, however, is difficult to use in practise: there is no guarantee
that we remain in the class of simply-connected quantised enveloping algebras
and it is not enough in general to consider only unipotent central characters.
2) The algebra U, is a Hopf algebra whose antipode squared is inner, [24,
4.9(1)]. Since U, has a unique one dimensional module it follows from [15,
Lemma 3.1] and {17, Lemma 1.5| that U, is symmetric. Since the block con-
taining this module is never primary we deduce from Lemma 2.9 and Theorem
4.4 that Z/m, Z is a proper subalgebra of Z(U, ;). Note that Z/m, Z is always
a subalgebra of Z(U. ) thanks to Lemma 2.8.

3) More details on the influence of Z on the representation theory of Uc(g)
can be found in [5, Section 4].

5. QUANTISED FUNCTION ALGEBRAS AND QUANTUM BORELS

51. Let G,B*,B~,T and W be as in 4.1. Let X be the character group
of T and let ® be the root system of G. Let ®* be the positive roots of ®
with respect to BY and let {a;: 1 < i < 7} be the simple roots in & and
{m:i : 1 £1i £ r} be the fundamental weights in X. Let (, ) be the natural
pairing between the root lattice, ¢, and the weight lattice, P.



Lie Algebras and Quanium Groups 159

There is a stratification of G

G= I Xuw

wy wo €W

where Xy, w, = BtunB* N B~ w,B~. This restricts to & stratification of B*

B* = [ Xew-

weW

For w € W let é(w), respectively s{(w), equal the minimal length of an ex-
pression for w as a product of simple, respectively arbitrary, reflections.

Let wp be the longest word in W and let N = f¢(wg). Since wp sends
®* to —®* there is an involution ¢ on the set of integers {1,r] defined by
WoQ; = —Qg(;). It can be shown that the number of fixed points of o equals
2s(wg) — 7.

5.2. Let € € C be a primitive £** root of unity where £ is an odd integer
greater than one and good, that is £ is prime to the bad primes of .

Let UZ° be the non-positive subalgebra of U.(g) as defined in [9], the quan-
tised enveloping algebra of a Borel subalgebra of g. We have a triple

Z5° S Z2WE) S U

where Z5° is the -centre of US?, that is the intersection of the f-centre of
Uc(g) with US®. By [10] US® is a free Z5"-module of rank ¢4™5" By [10]
Z5? is isomorphic as a Hopf algebra to O[B*], the ring of regular functions
on B*. Given b € B* we let my denote the corresponding maximal ideal of
ZOSO. By Theorem 2.3 we have a morphism of varieties

a : Maxspec(Z$°) — Alg(ed™5"),

We denote a(m,) by USO(b).
Let O.[G] be the quantised function algebra of G at a root of unity ¢, as
defined in [10]. We have a triple

Zo € Z(O[G]) C OG],

where Zg is the ¢-centre of O.[G], [10]. By [10] and [35] O.[G] is a free Zp-
module of rank ¢4™C, By [10] Z, is isomorphic as a Hopf algebra to O[G].
Given g € G we let my; denote the corresponding maximal ideal of Z,. By
Theorem 2.3 we have a niorphism of varieties

B : Maxspec(Zp) — Alg(e™E).
We denote 3(m,) by O.[G](g).
5.3. The following theorem shows us that there is only a finite number of

isomorphism classes of algebras US%(b) and O.[G](g). It also demonstrates

that the PI degree of US?, respectively of O[G], is ¢ é(‘v“("’“», respectively
N,
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Theorem. [9, Theorem 4.4], [10, Section 9], [12, Theorem 4.4 and Proposi-
tion 4.10] Let w,wy,we € W and let b, € X, ., and ¢,¢ € X, we-

(a)(i) There is an algebra isomerphism USO(b) = USO(Y).

(ii) There are precisely €75 simple US%(b)-modules, ecch having dimension
PE(Ew)+sw))

(b)(i) There is an aigebra isomorphism O.[G](g) = O.[G](¢').

(ii) There are precisely €752 fon) simple O[G](g)-modules, each having di-
mension 0@+ ts(wy  w))

5.4. Centres. We begin by introducing some distinguished elementsin O[B*]
and O[G]. Let V() be the simple G-module with highest weight v, and
let V(w:)* be its dual. For each ¢ choose a highest weight vector v;, respec-
tively a lowest weight vector v}, of V(w;) . Let f;, respectively fi, be the
unique weight vector in V(;)* dual to v;, respectively v;. For each 7 we have
elements a;, b; and ¢; of O[G] defined by

ai(g) = f;(i)(gvfy(i))e b(g) = fz‘l(gvi)a ci(g) = fl’(i)(gvzlr(i))‘

These elements restrict to elements of O[B*]| which we will denote by a;, b;
and ¢; too.

Given a subset I C [1,7] let S{I) be the subalgebra of C[ X}, Y1,. .., X, Y;]
generated by X¥Y!™ for i € I and 0 < k < €. Then S(I) is a free module of
rank ¢/l over So(I) = C[X!. Y i€ I].

Theorem. a) Let [ = {1 < i < T 1 0(i) # i} and let I be a set of orbit
representatives for the o-action on I. Then the centre of US® is isomorphic
to the algebra

O[B*] ®son SU).
where Sp(I) — O[B*] sends X{ to a;c; and Y t0 ayic,). In particular
Z(UZ®) is a free Z5-module of rank 7=,
b) The centre of O[G] is isomorphic to the algebra

O[G] ®se(.rp S([1.7]),

where Sy([1,7]) — O[G] is obiained by sending X{ to b; and Y to ;. In
particuler Z(O[G)]) is a free Zy-module of rank €.

Proof. Part (a) can be found in the appendix: it follows the method of proof
of (b) in [14]. a

Remark. If G only has components of type B,, C,, D,. (r even),Ey, 5. Fy or G,

then s(wg) = r so I = § and consequently Z{US®) = O[B*]. It can be shown
that this is the only case when one of the algebras above is Gorenstein.

5.5. In constrast to Section 3 the centre of US%(b) or O.[G](g) is easy to
describe.

Lemma. a) Let b€ B*. Then Z(US(b)) = Z/myZ.

b) Let g € G. Then Z(O.[G](g), = Z/m,Z.
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Proof. (a) By Lemma 2.8 the natural map ¢ : Z/myZ — Z(US%(b)) is injec-
tive, so by Theorem 5.4(a), it is enough to show that dim Z(US0(b)) = ¢ —s(we)
for all b € B*. Since X.., = [[, <w Xew, Where < denotes the Bruhat-
Chevalley order on W, the identity of B* is contained in the closure of any
cell X, .. By Proposition 2.10 dim Z(U2°(b)) < dim Z(UZ°(1)) forall b € B*.
We will prove that dim Z(UZ%(1)) = ¢ —stwo),

Let U; = US%(1). Fix a reduced expression wp = s;, . .. 8i and hence an
ordering ; < ... < By in R*. The algebra U, is generated by the clements
Fp, (1 £j £ N) and K; (1 <4 <) subject to the relations

(3) K:K;=K;K,, Kf=1
(4) KiFﬁJ- = 6'—(13j.w.')FﬁjI(i, Fé, =0
) FaFp = CiPF, Fy +pl, j<k

where p:;k is a polynomial in the variables Fj, for j < h < k, [11, Theorem
9.3].

Suppose we have defined inductively an ¢4™ 8" _dimensional algebra U,
with generators Fjp, and K; satisfying (3), (4) and

(6) Fp Fg, = e PPIFs Fy + pTh

where p;. is a polynomial in the variables Fj, for j < A <min{k, N+1-m}.
We have a morphism
C — Alg(¢dimB™)

where t € C is sent to the algebra U,,,(t) with generators Fjp and K; satis-
fying relations (3), (4) and (6') obtained from (6) by replacing Fj,,,_,, with
tFgy, 1. Then Unit) = U, for t € C* and, by definition, Umyr = Um(0).

The algebra Uy is generated by Fj; and K; subject to relations (3), (4)
and

Fg Fp, = e—wj,ﬁk)FﬁkFﬁj'

By a repeated application of Proposition 2.10 we find that dim Z(U=%(1)) <
dim Z(Uy). Using the techniques of {11, Chapter 2 and Section 10] we can
see that the dimension of Z(Uy) is £7*(*) as required.

(b) This is proved in a similar manner using [20, Section 2.9]. O

5.6. Blocks. Given w, wy,ws € W let
S(w)={1<1i<r:0(i) #1 and wow, wwy € Staby (w;)}
and
T(wy,we) = {1 <1< wowy, wowse € Staby(w;)}.
Note that S(w) is o-stable.

Theorem. (a) Let b€ X,,,. Then US®(b) has €250 blocks,
(b) Let ¢ € X, wo- Then O[G](g) has 0T plocks,
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Proof. (a) Recall that I is a set of representatives for the o-action on I =
{1 <i<r:o0(i) #i}. The number of blocks of US?(b) equals the number
of maximal ideals of Z/m,;Z, either by Theorem 2.4 or by Lemma 5.5. The
description of Z(US?) shows that Z/m,Z is the tensor product of a discrete
family of £-dimensional algebras indexed by elements of I, where

(l) if a,-c,-(b) 7é 0 # ag(i)cly(i)(b) then Z, = Ct;

(i1) if 2ic;(b) # 0 and a,3)Coqi)ib) = 0 (or vice-versa) then Z; = C[X]/(X?);

(lll) if a,-c,-(b) =0 = a,(,-)c,(,-)(b) then Z, = (C[Xl, . ..Xf_l]/(Xij 01 S
k< e—1).

It follows that U2%b) has ¢4 blocks where d = |{i € I : a;ci(b) # 0 #
8o(i)Co(i) (D)}

By definition a; is a co-ordinate function on the maximal torus T so is
non-vanishing on B*. By [6, Lemma 7.2] ¢; does not vanish on X.,, if and
only if wow € Stabw/(t;), or equivalently wwy € Staby (@s(;). The first part
follows.

(b) This is proved similarly. Details can be found in [6, Section 7). a

5.7. Azumaya locus. The precise structure of Z(US%(b)) and Z(O.[G](yg))
can be deterniined using Lemma 5.5 and the methods in the proof of Theorem
5.6. The result, however, is a little awkward to present in general, but in the
Azumaya case things are simpler.

Theorem. (a) Let w € W be such that é(w) + s(w) = N + s(wp). Let
n=r—s{w) andd = %(N + s(wp)). Then jor b € X, we have

t'l
, ClXy, ... s Xo(w)-swo)]
US%(b) = () Mat ( e 2.
@ (Xf‘ tere X.S(w)-—s(wr_))
(b) Let wy,wy € W be such that €(wy) + €(ws) + s(wy'wy) = 2N. Letn =
r— s(w;lwl). Then for g € Xy, v, we have

e ClXn. X yotyn]
OE[G](g) = @Maty\’ ( ()(If — Xf( 5 wi) ) .

s(w;lwl))

Proof. (a) By Theorem 5.3 every simple US%(b)-module has maximal dimen-
sion so it follows from (1) that US°(b) = Mat(Z/myZ). The argument of
[6, Proposition 3.2] shows that a point (b, ) € Maxspec(Z(U=°)) such that
ai¢i(b) = a,(:)Coq;)(b) = 0 for some i € I is singular. Since the Azumaya locus
is contained in the smooth locus of Maxspec(Z(US?)) it follows that only
cases (i) and (ii) in the proof of Theorem 5.6 can occur. The result follows
from 5.3 by counting the number of simple Z/m;Z-modules.

(b) This is proved similarly. Details can be found in [6, Section 3]. O

Remark. This theorem is the crucial step in the determination of the repre-
sentation type of the algebras U=%(b) and O.[G](g), see [6, Section 4].
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APPENDIX A

A.1. We would like to describe the centre of US?, We follow the ideas of
[14] and use the notation of [12] without further ado. We recall that there is
an isomorphism of Hopf algebras

UE® = O[B"]
where O,[B*] is the factor algebra of O,[G] essentially obtained by restricting
functions from Uy(g] to UZ°, [10]. Let
7 O[G] — O[B*]

be the canonical map. We often abuse notation by continuing to write z for

m(z).

A2, For1 < i < r the following elements of O,[B*] are defined as matrix
coefficients (compare 5.4)

_ LV (—wwm:) _ V(-wom:)
Ii= C¢wow|,.,_'wl_a Yi = Cyw; ,.,_w: .

We have a general commutation rule, [12, 1.2]

(7) CowCow = 6—(Fl‘ﬂ2)+(m,uz)c¢‘w0¢v + z Cypy w;Coh, w55

J
where 1; ®¢; = p;(M;(E) @ M;(F))¢ @9, wj®u; = pi(M;(E)® M;(F))w®v
and p;, p; are scalars and M;, M; are monomials, at least one of which is non-
constant.

A.3. We define
ik = (2:9:) (@owyyra)
Lemma. For 1 <i<r and 0 <k < ¢ the element z; is central in US".

Proof. It can be checked, using {7), that z;, commutes with all matrix coef-
ficients of the form c;/,‘(v)‘) where v is a lowest weight of V(X). By [12, Lemma
2.3(2)] O[B*] is generated by such matrix coefficients, together with the

: V(p)
inverse of ¢y - a

A4 LetI={1<i<7:0(i)#i}andlet n = |I|. Let R be the algebra
with generators X; and Y] for j € I satisfying the following relations

®)  X;X;y=X;X;, Y;Yy=Y:Y;, XY =e®rmimly, X,

Let Ry be the subalgebra generated by X} and Y/, a polynomial ring in 2n
variables. It is immediate that R is a free Ry-module of rank ¢2" with basis
(X3 X@Yir Y 0<a,b; <0}

By (7) we have an algebra map

¥ : R — OJ[B*]
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which sends X; to z; and Y; to y;. There is a commutative diagram,
UZ%(sk, i) — UZ%(g)

! !

Uyg(sli) —— Uy(o)
which, in particular, induces maps
n;i : O[B*] — O[B*(SL(2)), 1]
and
7i + O[G] — O.[SL(2),1],
see {12, 2.4] [or example. Lel wg = 35, ... 5, be a [ixed reduced expression

for the longest word of the Weyl group. We define two algebra maps
®jo1 OdB*(SL(2)).4j),

o: O[B4 222 o [prjen DaS Sy,

and
Ti) ® @iy
—_—

71 0[G] 2= 0.[G]®¥ Qi1 O[SL(2),;].

The map o is injective by {12, Theorem 3.2]. By construction we have another
commutative diagram

O[B*] —— Qi O[B*(SL(2)). 3]
9) nT T‘lr.l®---®7r.-,v
OlG] —— QL OdSL(2) i)
A5. For any algebra O [B*(SL(2)), %] we can construct elements analogous
to z; and y;, which we denote by z(z) and y(i).
Lemma. Let j € J. Then 5(z;) = ®:z(3)™? and n(y;) = @iy(i)™".

Proof. This first equality follows from [14, Proposition 3.1] together with (9).
For the second part we note that in O,[G] we have

i) = CW—wm; T PFi v ‘P, 3
A('_l/ ) A¢w ; = E (’¢ ® (’¢ X
s

where {¢°} and {v,} are dual bases for V{(-wyw;)* and V(—wyw;) respec-
tively, chosen so that ¢' = ¢® and v) = v_g,. In O[B*] we have ¢4, ,, =0
unless s = 1. So we deduce that in O [B*]

AN Ny =% ®... Q.

Hence we need only describe 7;(y;) to complete the lemma. A simple calcu-
lation yields the following

i ifi=j
Ti(yj) = {yj J

1 otherwise.
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A.6. The above lemma provides us with a pair of linear maps
m:N* — NV m:N*— NV,

which are determined on the components by m; and m’, respectively. These
induce linear maps

(R = () =

Lemma. The maps ™ and M’ are injective.

Proof. For 7 this is proved in {14, Propositicn 3.2 and Proposition 6.1]. That
M’ is injective follows from the explicit description given in the proof of
Lemma A.5. a

A.7. We now have two algebra maps

N
81 : O[B*] — Q) O[B~(SL(2)),ij],

j=1
and
6,: R — (R) OB*(SL(2)),i]

where 6 is the restriction of o to O[B™] and 6, is the composition ¢ o 9.

Let I be a set of orbit representatives for the o-action on I. In particular
|I| =7r—- S(’LU()). Let Zj‘k = (Xj)/j)k(Xg(j))/,(j))t—k fOI'j € land 0 S k S ¢
and let R’ C R be the subalgebra generated by the elements Z;,. It follows
from (8) that R’ is commutative and it is straightforward to check that R’ is
free over the subring Ry generated by Z;¢ and Z;, with j € I, a polynomial
ring in n variables.

Lemma. There erists an algebra map

(10) 8:0[B*| ®@r, R — Q) O[B*(SL(2)),ij],

j=1

such that 8 is injective. In particular O[B*|®g;, R’ is an integral domain of
Krull dimension dim B+,

Proof. The map 6 is obtained by comibining 8; and ;. That this is well-
defined follows immediately from construction. Let t = r—s(wy), {j1,-.., 5t} =
I. The left hand side of (10) is a free O[B*]-module with basis {Z;, &, ... Zj, x, :
0 < k; < £} whilst the right hand side is a free ®J.,0[B*(SL(2)), i; -module
with basis {®j=,zgj y; 0 < bj,¢; < €}. By Lemma A.6 6, is injective with
respect to these bases, proving the first claim. The second follows from the

fact that the right hand side of (10) is 2 domain and that the left hand side
is a finite extension of O[B*]. O
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A.8. Now we have an algebra map
¢ 0[B+] Rry, R — 05[B+],
whose image is generated by O[B™*] and the elements z;.

Theorem. The centre of US® is isomorphic to O[B*| @, R’ under the map
&.

Proof. Let Z' be the image of ¢. By Lemma A.3 Z’ is central in O,B*].
Since Z’ is an integral domain of Krull dimension dim B* it follows from the
second claim of Lenima A.7 that ¢ is an injection.

Let P = {X € P:wo: =2} Write A =) a;t0;. It is clear that woA = X
if and only if }"7_, (ai+ @s(s))wo: = 0. It follows that P*0 = Z{w; —w, : 1 € I).
Now the quotient ring of Z’ must equal the quotient ring of Z(O[B*]) thanks
to the description given in {12, Theorem 4.5]. Since Z(O[B*]) is a finite
extension of Z’ it is therefore enough to show that Z’ is integrally closed.

But the arguments of [14, Section 7] can be applied verbatim, confirming
this. a
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THE YANG-BAXTER EQUATION FOR OPERATORS ON
FUNCTION FIELDS

JINTAI DING AND TIMOTHY J. HODGES

INTRODUCTION

In this note we show how infinite dimensional versicns of the Cremmer-
Gervais and Jordanian R-matrices occur as operators on rational function
fields. Moreover we classify certain types of solutions of the Yang-Baxter
equation on rational function fields and show that the above operators are
essentially the only solutions.

Recall that if A is an integral domain and o is an automorphism of A4,
then o extends naturally to the field of rational functions A(z) by acting
on the coefficients. Denote by F(z;, z3) the field of rational functions in the
variables z; and z3. Then for any 0 € AutF(z, z3), and any i,j € {1,2,3},
we may define 0;; € AutF(z;, 29, 23) by realizing F(2y, 25, z3) as F(z;, z;)(2).
Set I' = AutF(z,2). Elements B = Y a;(21,22)0; of the group algebra
F(z1, 22)[['] act as linear operators on F(zy, z;) and we may define in this way
R;; as linear operators on IF(21. 2, z3). 'I'hus we may look for solutions of
the Yang-Baxter equation RjsRy3R23 = Ry3Ri3R)2 amongst such operators.
Denote by P the operator P - f(z1,22) = f(22, z1)-

First we look for operators of the form

R- f(21, 22) = a(z1/22) f(21, 22) + B(21/22) (22, 21)

where a{z),8(z) € F(z). One solution of this is an infinite dimensional
version of one member of the two parameter family of Cremmer-Gervais R-
matrices [2, 12]. Moreover up to a certain natural equivalence, this is essen-
tially the only such solution. This approach explains and clarifies the results
on generating functions for the Cremmer-Gervais R-madtrices in [11].

Next we consider the additive version: that is, operators of the form

R- f(21,22) = a(z1 — 22) f(21, 22) + B(21 = 22) f(22, 21)

where aiz), 8(z) € F(z). In this case the solution is again essentially unique.
It is again a kind of direct limit of finite dimensional olutions of the Yang-
Baxter equation. However this time the solutions are less familiar. They turn
out (when twisted appropriately) to be generalizations of the Jordanian R-
matrix [4] which may be viewed as quantizations of certain skew-symmetric
solutions of the classical Yang-Baxter equation [5, 9, 10].

This work is an analog for the constant Yang-Baxter equation of work of
Shibukawa and Ueno. In [14], Shibukawa and Ueno construct solutions of the

The sccond author was supported in part by NSA grant MDA904-99-1-0026 and by the
Charles P. Taft Foundation,
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Yang-Baxter equation with spectral parameter on nieromorphic functions of
two variables. They show that operators of the form

R(X\) =G(z1 — 20, \)P — G(21 — z2,6)]
satisfy the equation
Riz(A1)Riz(A1 + A2) Raz(X2) = Raz(A2)Riz(M1 + Az) Ria( A1)
for any k € F if G is of the form
#(0)8(A
Gy = 00 2
6(2)é(z)
and 8 satisfies the equation
B(z + y)0(z — 1)0(z + w)b(z — w) + O(z + 2)0(z — 2)0(y + w)B{w — y)
+0(z+w)b(z —w)b(y+ 2)0(y—2z) =0
The solutions of this equation are well known (see for instance, [15]). They
are of three types: elliptic, trigonometric and rational. These lead to opera-
tors of the respective types which we shall denote R.(}), R:()\), and R.(})).
Felder and Pasquier showed that the elliptic solutions when twisted and re-
stricted to certain finite dimensional spaces yield the Belavin R-matrices. A
similar procedure when applied to R,()), and R,()) yields trigonometric and
rational degenerations of the Belavin R-matrices. In these two degenerate
cases it is possible to take the limit as A — oo to obtain solutions of the
constant Yang-Baxter equation For R,(\) this yields (after the usual twisting
and restriction) the Cremmer-Gervais R-matrices. For R,(}\) it yields the

generalized Jordanian R-matrices referred to above. This situation can be
summed up in the following way.

R.(X) Rg(X)
1 A1
R,()) — R¥ Reg(A) —— Ree
| | | |
RN — R®  Re,() — R,

The matrices on the left are the operators on meromorphic functions. The
vertical arrows denote the degeneration of 8 from a true theta function to a
trigonometric function and then a rational function. The horizontal arrows
denote passing to the limit as the spectral parameter tends to infinity. The
right hand diagram gives the corresponding finite dimensional R-matrices.

1. THE CONSTANT YANG-BAXTER EQUATION ON RATIONAL FUNCTION
FIELDS

We begin by looking at operators of the form
R f(21,22) = a(21/22) f (22, 21) + B(21/22) (21, 22)
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where a(z), 8(z) € F(z). We wish to determine for which functions a and
3 the operator R satisfies the Yang-Baxter equation. For a rational function
a(z) € F(z), we shall denote by & the function a(z1/2;) € F(z1,2). With
this notation we may write R as &P + 81.

Lemma 1.1. The operator R = &P + 1 satisfies the Yang-Bazter equation
if and only if the following two equations are satisfied (in the rational function

field F(z,y))
(11) aiz)a(y) = a{zy)a(y) - a(z)a(yz™")

(12)  a(z)e(y)? + By)By "a(zy) = a(z)’a(y) + B(z)B(z")al(zy)

Proof. Applying both sides of the Yang-Baxter equation to an arbitrary func-
tion f(2, 22, 23) and comparing coefficients of f(2,(1), 2Z«(2), 20(3)) for o € L3
shows that the Yang-Baxter equation holds if and only if the following equa-
tions are satisfied.

a(Z[/ZQ)a(ZZ/Z3)2 + B(z2/z3)a(z1/ 23) B(z3/ 22) =
a(z1/z2) (22 2) + B(21/ z) 21/ 23)Biz2/ 1)

a(za/23)B(21/ z2)a(21 [ 23) = B(21/ z2)a(21/z3)a(22/ 1)
+ alz1/z2)o(22/ 23)Biz1/ 22)

B(22/ z3)a(21/ z3)alz3/ 22) + B(22/ 23)x(22/ 73)x(21/ 22)
= B(22/z3)a(z1/ 2)aiz1/ z3)
The last two equations are both equivalent to 1.1 and the first one to 1.2, O

Notice that if a(z) and 3(z) are solutions of the above equations then so
are Aa(z") and A\3(z") for any integer n and any A € F. Moreover we may
clearly multiply 3(z) by any member of I' = {¢(z) € F(z) | g(z)g(z™!) = 1}
and f3(z) will still satisfy 1.2. Surprisingly, the solutions to 1.1 and 1.2 turn
out to be almost unique modulo these adjustments.

Theorem 1.2. If a # 0 the operator R = &P + [5’1 salisfies the Yang-Bazter

equation if and only if, there enst A € F\O, p € F, k € Z and g(z) € " such
that

o) = 2o and @) = (250 + ) )

1-zk
Proof. The verification that o and 3 satisfy the hypotheses of the lemima is
elementary. Conversely, suppose that o satisfies 1.1. If a is a zero of a then
equation 1.1 implies that a(ay~')a(y) = 0 which is impossible unless a = 0.
Thus we may write « in the form
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where piz) is a polynomial with p(0) # 0. If b is a root of p then equation

1.1 implies that
z™p(by ™ )b p(yd™") - p(y)] =0
whence p(y) = b™p(yb~"). Thus if @ and b are roots of p so is ab™! and the
roots form a group H of order, say, k. Since p(0) # 0, we must have ™ =1
for all b€ H. Hence klm and p(z) = p(zb) for all b € H. This implies that
p(z) = A1 — z*)! for some integer I. Setting y = 7! in equation 1.1 and
substituting yields z™ % + 2™ = (1 + z¥)!sol = 1 and m = 0 or k. This
implies that a has the required form.
If a and (3 satisfy equations 1.1 and 1.2 then it is easily seen that

B(z)B(z™") = a(z)alz™") + 4
for some scalar v. Moreover for any fixed 7, any two solutions for 3 differ by
a factor g(z) € I'. If & and § are as in the statement of the Theorem, then

B(z)B("") = a(z)a(z™") + ula(z) + a(z™)) + 4?
= a(z)a(z™h) + pr + 42
Thus for any a the £ satisfying 1.2 are precisely the functions 3(z) = (a(z)+
m)g(z). O
Remark 1. This result remains true in the case of meromorphic functions.
The most interesting example is the simplest one; when k = 1, g(z) =
1 and the constants arc choscn so that RP satisfics the Hecke condition
(RP - g)(RP +q7') = 0. That is,
- -1
q q —gz
=—— and =
a(@) =~ and p(z) = L
In this case R restricts to one of the Cremmer-Gervais R-matrices on certain
finite dimensional subspaces.
Recall that the Cremmer-Gervais R-matrices are a two-parameter family
of solutions to the constant Yang-Baxter equation. If V is an n-dimensional

vector space with basis {e,es,...,e,}, the Cremmer-Gervais operators are
defined by [2, 12]

pple; @ e:) = qp Ve @ e+ > 4P (i, 5 k)ex @ earjok
k

where g and p are non-zero elenients of the base field F, § = ¢ — ¢! and
1 fi<k<j
nGi.gk)={ -1 ifj<k<i
0 otherwise

Proposition 1.3. Let R be the operator &P + BI where a(z) = §/(1 - z)
and 8(z) = (¢"' — gz)/(1 - z). Let V be an n-dimensicnal vector space and
identify V ®V with the subspace of F(2\, 22) of polynomials of degree less than
or equal to n in both variables. Then R leaves V @V inveriant and the matriz
representing R with respect to the basis zi2 is p,.
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Proof. Notice that for any ¢ and 7,

i pd
3 nG, g k)t = ===

s l1-z

From this it follows easily that
R -z =qzz + zn(i,j,k)zfz;+j—k
k

as required. (]

Just as the more general Cremmer-Gervais operators p, may be obtained
from p; by a simple twisting niethod, so we may twist this operator R to
obtain more general matrices R, which restrict to p, in the same way as R
restricts to p;. Fix p € F\0, and define an invertible operator F' on F(z), 22)
by

F - f(z1,22) = f(p~'21,p22)
Theorem 1.4. Let R = &P + BI be a solution of the Yang-Bazter equation
on F(z1,25). Then Rr = F;'RF); is also a solution of the Yang-Bazter
equation. Moreover, when a(z) = §/(1 — z) and B(z) = (¢7* - qz)/(1 - 2),
then Rp again leaves V ® V invariant and the matriz representing Rp with
respect to the basis 2]z} is p,.

Proof. Tor the first assertion it suffices to check the relations

(1) FiaFi3Fas = FosFigFys
(2) RiaFosFi3 = FisFasRys
(3) RyaFiaF13 = Fi3FioRp;

The second assertion is verified exactly as in the previous proposition. (]

We ncw turn beiefly to consider the “additive” version of this construction.
Namely we can look for operators of the forin

R f(z1,22) = a(z) — 22) f(22, 21) + B(21 — 22) (21, 22)

satisfying the Yang-Baxter equation. One sees analogously that R satisfies
the Yang-Baxter equation if and only if

a(r)a(y) = a(z - y)a(y) — a(z)aly - z)
a(z)a(y)® + B)B(-y)a(z +y) = a(z)’aly) + B(z)B(-z)a(z + y)

Theorem 1.5. The operator R = &P+ (1 satisfies the Yang-Bazter equation
if and only if there exist X\, u € F, and g(z) € I such that

)=_’;\ and ﬂ(z):(y+';\)g(z)-

83

o

For this operator,

R zlzy = palzy + ) n(i.j. k)akzs ™
k
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Hence R again leaves the subspaces V ® V invariant and on these spaces
beconies the operator

Re; ®e:) = pe; @es + Y (i, J, k)ex ® ewrjoko.
k

One can again twist using an additive version of the twist described in 1.4.
Restricting these matrices to finite dimensional subspaces yields quantiza-
tions of the boundary classical r-matrices discovered by Gerstenhaber and
Giaquinto [9, 10] (see [5] for details).

If we replace F(z,2;) by meromorphic functions in two variables, then
replacing z by 2% in the funcions of Theorem 1.2 clearly leads to solutions
of the additive form. In particular the simplest such solution yields

o(z) = sinwh B(z) = sinw(h + 2)

sinwz’
Because R is Hecke, The family of operators

R()\) = e—wiAR _ e’ri)‘R_l

will satisfy the general Yang-Baxter equation. After multiplying by a suitable
scalar, R will be of the particularly symmetric form R(A) = al + BP where
a(z) = SiIlﬂ"(Z + ) _ Sillﬂ"(Z + h)
sinwz sinmz
This is the trigonometric version of the R cperator of Shibukawa and Ueno
discussed in the introduction.

Finaly let us note an interesting connection between the symmetric algebra
associated to infinite dimensional Cremmer-Gervais operator and the affine
quantum universal enveloping algebra U,(sl{2)). Let V = F{z] and let R be
the operator on V @ V described in 1.3. As usual we can form the associated
g-symmetric algebra as Sgq(V) = T(V)/((RP - ¢)(V ® V)). Now for any
F €V ®V =TF[z, 2], we have (R — q)f = 8(P — I)f. From this it follows
that the elements of (R — g)(V ® V) are of the form (gzo — ¢”'21}g where
g(z1, 22) is symmetric (in the usnal sense). Now,

-1 kol g U ky k4l o~ kbl KL L Lk
(922 — g '21) (2N 2y + 2{28) = gz 25" — g g + gAY - g7 A

Hence if X denotes the image of z* in Sg4(F[2]), then the relations defining
the symmetric algebra are

Xenr Xt = @ XieXerr = @ XiXrr = Xenn Xi
These are precisely the relations defining the subalgebra Ut of Uq(5[(2)) {3].

Hence we have Sg4(F[z]) = U*. It would be interesting to have a more
abstract explanation for this isomorphism.

sinmz

sin wh.

sinwd,  B(2)
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Noncommutative Differential Geometry and
Twisting of Quantum Groups
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Abstract We outline the recent classification of differential struc-
tures for all main classes of quantum groups. We also outline the
algebraic notion of ‘quantum manifold’ and ‘quantum Riemannian
nianifold’ based on quantum group principal bundles, a formula-
tion that works over general unital algebras.

1 Introduction

There have been many attempts in the last decades to arrive at a theory of
noncommutative geometry applicable to ‘coordinate’ algebras that are not
necessarily commutative, notably that of A. Connes coming out of abstract
C*-algebra theory in the light of the Gelfand-Naimark and Serre-Swan the-
orems. One has tools such as cyclic cohomology and examples such as the
noncommutative torus and other foliation C*-algebras. Another ‘bortom up’
approach, which we outline, is based on the idea that the theory should be
guided by the inclusion of the large vein of ‘naturally occuring’ examples,
the coordinate algebras of the quantum groups U,(g) in particular, and Hopf
algebras in general, whose validity for several branches of mathematics has
already been established. This is similar to the key role that Lie groups
played in the develcpment of modern differential geometry. Much progress
has been made in recent years and there is by now (at least at the algebraic
level) a more or less clear formulation of ‘quantum manifold’ suggested by this
approach. After being validated on the g-deformation exanmples such as quan-
tum groups, quantum homogeneous spaces etc, one can eventually apply the
theory quite broadly to a wide range of unitzl algebras. The approach will be
algebraic, although not incompatible with C* completions at a later stage. In
particular, as a bonus, one can apply the theory to finite-dimensional algebra,
i.e. to discrete classical and quantum systems.

An outline of the paper is the following. We start with the lowest level
structure which (in our approach) is the choice of differential structure. This

1Reader and Royal Society University Rescarch Fellow
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is the topic of Section 2 where we ontline the recently achieved more or less
complete classification results. In Section 3 we develop the notion of ‘quantum
manifold’ {1] based on noncommutative frame bundles with quantum group
fibre. Usual ideas of ‘sheaf theory’ and ‘local trivialisations’ do not work in
this setting, but from {2] one has global algebraic replacements. There is also
an appropriate notion of automorphism or diffeomorphism quantum groups
3].

2 Quantum differential forms

Let M be a unital algebra, which we consider as playing the role of ‘co-
ordinates’ in algebraic geonietry, except that we do not require the algebra
to be commutative. The appropriate notion of cotangent space or differential
1-forms in this case is

1. @ an M-bimodule

2. d: M — Q! alinear map obeying the Leibniz rule d(ab) = adb + (da)b
for all a.b € M.

3. Themap M@ M — Q!, a® b — adb is surjective.

Differential structures are not unique even classically. and even more non-
unique in the quantum case. There is, however, one universal exanmple of
which others are quotients. This is

Qw=ker-CM®M, do=a®1-1Qa. (1)
This is common to more or less all approaches to noncommutative geometry.

The main feature here is that, in usual algebraic geometry, the multipli-
cation of forms Q! by ‘functions’ M is the same from the left or from the
right. However, if adb = (db)a then by axiom 2. we have d(ab — ba) =0, i.e.
we cannot naturally suppose this when M is noncommutative. We say that
a differential calculus is noncommutative or ‘quantum’ if the left and right
niultiplication of forms by functions do not coincide.

When M has a Hopf algebra structure with coproduct A : M — M @ M
and counit € : M — k (k the ground field), we say that Q! is bicovariant if [4]

4. Q! is a bicomodule with coactions Ay, : Q! - M QL Az : Q! —
Q' ® M bimodule maps (with the tensor product bimodule structure on the
target spaces, where M is a bimodule by left and right multiplication).

5. d is a biconmodule map with the left and right regular coactions on M
provided by A.

A morphism of calculi means a bimodule and bicomodule map forming a
commuting triangle with the respective d maps. One says [5] that a calculus is
coirreducible if it has no proper guotients. Whereas the translation-invariant
calculus is unique classically, in the quantum group case we have at least
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complete classification results in terms of representation theory [5]. The di-
niension of a calculus is that of its space of (say) left-invariant 1-forms, which
can be viewed as generating the rest of the calculus as a right A/-module.
Similarly with left and right interchanged.

We note also that in the bicovariant case there is a natural extension
[4] from Q! to Q" with d®> = 0. This is defined as the tensor algebra over
M generated by Q! modulo relations defined by a braiding which zcts by a
simple transposition on left and right invariant differential 1-forms. Other
extensions are also possible and in general the differential structure can be
specified order by order. Given the extension, one has a quantum DeRahm
cohoniology defined in the usual way as closed forms modulo exact ones.
Apart from cohomology one can also start to do ‘U(1)’ gauge theory with
trivial bundles, where a gauge field is just a differential form a € Q! and its
curvature is F =da + a A a, ete. A gauge transform is

" =7"lay+y7'dy, FY=7"'F~ @)

for any invertible ‘function’ v € M, and so on. One can define then the space
of flat connections as those with F' = 0 modulo gauge transformation. This
gives two examples of ‘geometric’ invariants which work therefore for general
algebras equipped with differential structure.

2.1 M =kz]

For polynomials in one variable the coirreducible calculi have the form [6]

Q' = kyfz], df(z) = w

f(z)-g9(x ) = f(z + Ng(X ), 9(x 2) - f(2) = 9(X, 2) f(x)

for functions f and one-forms g. Here k) is a field extension of the form k{}\]
modulo m(X) = 0 and m is an irreducible monic polynomial. The dimension
of the calculus is the order of the field extension or the degree of m.

For example, the calculi on Ciz] are classified by X9 € C (here m()) =
A — Xg) and one has

f(z + 20) - J(2)

Q' = dzCfz], df =dz
Ao

,  zdz = (dz)x + Ao

We see that the Newtonian case Ag = 0 is only one special point in the moduli
space of quantum differential calculi. But if Newton had not supposed that
differentials and forms commute he would have had no need to take this limit.
What one finds with noncommutative geometry is that there is no need to
take this limit at all. It is also interesting that the most important field
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extension in physies, R < €, ean bhe viewed noncommntative-geometrically
with complex functions C[z] the quantum 1-forms on the algebra of real
functions R{z]. There is nontrivial quantum DeRahm cohomology in this
case.

2.2 M =C[G]

For the coordinate algebra of a finite group G (for convenience we work over
C) the coirreducible calculi correspond to nentrivial conjugacy classesC C G
and have the form

Q'=C-ClGl. df =) g-(Le(H) =), [-9=9-Le(f)
gec

where Ly(f) = f(g') is the translate of f € C[G]. The dimension of the
calculus is the order of the conjugacy class.

For the coordinate algebra C[G] of a Lie group with Lie algebra g the
coirreducible calculi correspond to maximal ideals in ker e stable under the
adjoint coaction. Or in a natural reformmlation {5] in terms of quantum
tangent spaces the correspondence is with irreducible Ad-invariant subspaces
of the enveloping algebra kere C U(g) which are stable under the coaction
A, = A-id®@ 1 ofl/(g). For example g itself defines the standard translation-
invariant calculus and this is coirreducible when g is semisimple.

23 M=CG

For the group algebra of a nonAbelian finite group G, we definitely need the
nmachinery of noncoinmutative geometry since M itself is noncommutative.
We regard these group algebras ‘up side down’ as if coordinates, i.e. we de-
scribe the geometry of the noncommutative space G in some sense. The above
definitions make sense and differential structures abound. The coirreducible
calculi correspond to pairs (V, p,A) where (V,p) is a nontrivial irreducible
representation and A € V/C [5]. They have the form

Q'=V-CG, dg={(ip(g9)—1)N)-9, g-v=1{(p(g)v) g

where g € G is regarded as a ‘function’. The dimension of the calculus is that
of V. The minimum assumption for nierely a differential calculus is that A
should ke cyclic.

For M = U(g) (the Kirillov-Kostant quantisation of g*) one has a similar
construction for any irreducible representation V of the Lie algebra g and
choice of ray X in it. Then
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where £ € g is regarded as a ‘function’. The dimension is again that of V.
For example, let g = b, be the 2-dimensional Lie algebra with [z,¢] = z.
Let V be the 2-dimensional representation with matrix and ray vector

=0 7). w2=(5 o). 2=(3):

Then dt = X and dz are the usual basis of V and obey
[t.dz] = [r,dz] =0, [t,dt]=d¢t, [z,dt]=dz.

Replacing z trivially by a vector z;, i = 1, 2,3 one obtains similarly a natural
candidate for noncommutative Minkowski space along with its differential
structure. It has measurable astronomical predictions [7].

This covers the classical objects or their duals viewed ‘up side down’ as
noncommutative spaces. For a finite-group bicrossproduct C[M]|mCG the
classification is a mixture of the two cases above and is given in [8]. The Lie
version remains to be worked out in detail. The important example of the
Planck scale quantum group C[z]»<C|p], however, is a twisting by a cocycle
of its classical limit C[Ro<R] and is therefore covered by a later subsection.

2.4 Proofs

The above cases are all sufficiently elementary that they can be easily worked
out using the following simple observations known essentially (in some form or
other) since [4]. We suppose for convenience that H has invertible antipode.

1. kere C M is an object in the braided categorv of left crossed M-
modules (i.e. modules over the quantum double D(Af) in the finite-dimensional
case) by multiplication and the left adjoint coaction.

2. The isomorphism M ® M=M @ M given by a ® b — (Aa)b restricts
to an iscmorphism O, ;, = ker e ® M of bimodules and of bicomodules, where
the right hand side is a right (co)module by the (co)product of M and a
left (co)module by the tensor product of the (co)action on kere and the
(co)product of M.

This implies that every other bicovariant Q' is of the form Q'2Q,® M
where () is a quotient object of ker € in the category of crossed M-modules.
Le. the calculi correspond to ideals in ker e stable under the adjoint coaction.
Given Q! the space (p is given by the right-invariant differentials. In cate-
gorical terms the braided category of bicovariant M-bimodules as featuring
above (i.e. bimodules which are also bicomodules with structure maps be-
ing bimodule maps) can be identified with that of crossed AM-modules, under
which the Hopf module for the universal calculus corresponds to kere.

When this is combined with the notion of coirreducibility and with the
Peter-Weyl decomposition of an appropriate type for kere, one obtains the
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classification results above. These latter steps have been introduced by the
author [5] (before that one found only sporadic examples of calculi on partic-
ular quantum groups, usually close to the unique classical calculus.)

We also note that for any finite-dimensional bicovariant calculus the map
d: M — Qo ® M can be viewed as a ‘partial derivative’ 3, : M — M for each
z € §35. The space §j is called the invariant ‘quantum tangent space’ and
is often more important than the 1-forms in applications. These &, are not
derivations but togerher form a braided derivation in the braided category of
M-crossed modules (there is a braiding as z € Q) passes a € M) [5)].

2.5 Cotriangular quantum groups and twisting of cal-
culi

We recall [9] that if M is a quantum group and x : M @ M — k a cocycle in
the sense

X(by ® €y) X{(a @ bzye () = x () ® by)x(a b2y @ ),
x(18a) = e(a), Va,bce M
then there is a ‘twisted’ quantum group MX with product
@ x b= x(an,®bu))epbax " (ap) ® ba)

and unchanged unit, counit and coproduct. Here x ™! is the inverse in (M ® M)*,
which we assume, and Aa = a,,® a,,), etc., is a notation.

Theorem 1 [10] The bicovariant differentials Q' (MX) are in 1-1 correspon-
dence with those of M.

In fact the entire exterior algbera in the bicovariant case is known to be a
super-Hopf algebra (Brzezinski’s theorem) and that of MX is the twist of that
of M when Y is trivially extended to a cocycle on the latter. The more direct
proof involves the following:

Theorem 2 [10] There is an equivalence F of braided monoidal categories
from lefi M-crossed modules to left MX-crossed modules given by the functor

}-(V,D, AL) = (V,DX,AL),

a>Xv = x(au) @ vP)(a@bv®)Px ((aupv? )P ®as), Ya€ M, veV,

where > denotes the action and A v = v'P @ v® is a notation. There is an
associated natural transformation

cvw  FVYRFW)ZF(VRW), cvww®w)=x(vP@uw)?uw?.
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